Robust Causal Network Pipeline for Gene Expression Time Series

Jonathan Lu

Bianca Dumitrascu, Prof. Barbara Engelhardt 4/25/2018

Goal: Understand Glucocorticoid Response

- Immunosuppressant drugs
 - Asthma, Eczema
 - Anti-inflammatory
 - Metabolic side effects
- <u>Complex genetic response</u>

Glucocorticoid Transcriptional Response is Complex

Glucocorticoid Transcriptional Response is Complex

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Challenges

- Causal Inference
- Statistical Significance
- Scalability

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Challenges

- Causal Inference
- Statistical Significance
- Scalability

Goal

- 1. Build causal network pipeline to overcome challenges
- 2. Validate method on community benchmarks, real data

What is a causal edge?

$$I^{k}(X,Y) = -\sum_{t=k}^{T} P(X_{t-k},Y_{t}) \log \frac{P(X_{t-k},Y_{t})}{P(X_{t-k})P(Y_{t})} \qquad Y_{t} = \sum_{i=1}^{K} a_{i}Y_{t-i} + \sum_{i=1}^{K} b_{i}X_{t-i} + \varepsilon_{t}$$

What is a causal edge?

Vector Autoregression

Dynamic Bayesian Network

$$Y_t = \sum_{i=1}^{K} a_i Y_{t-i} + \sum_{i=1}^{K} b_i X_{t-i} + \varepsilon_t$$

 $\begin{array}{l} P(X_1 \ldots X_1^n \ldots X_T^n) = \\ P(X_1) \prod_{t=2}^T \prod_{i=1}^n P(X_t^i | pa(X_t^i)) \end{array}$

What is a causal edge?

Dynamic Bayesian Network

Gaussian Process

 $X_t = f(pa(X_t)), f \sim GP(m, \mathbf{k})$

$$Y_{t} = \sum_{i=1}^{K} a_{i} Y_{t-i} + \sum_{i=1}^{K} b_{i} X_{t-i} + \varepsilon_{t}$$

 $P(X_1 \dots X_1^n \dots X_T^n) = P(X_1) \prod_{t=2}^T \prod_{i=1}^n P(X_t^i) pa(X_t^i)$

Previous Work

Feature	Mutual Information	Vector Autoregression ²	Dynamic Bayesian Network ³	Gaussian Process ⁴
Effective	~	*	~	
Scalable			★	*
Statistical Significance	*	~	~	≍

Note: we only discuss existing methods. For example, it is possible for a future GP method to be developed that, e.g. does statistical significance.

- 1 Meyer 2007, Zoppoli 2010
- 2 Opgen-Rhein 2007, Yao 2015
- 3 Hartemink 2001, Young 2013
- 4 Penfold 2015, Penfold 2012

Previous Work

Feature	Mutual Information	Vector Autoregression ²	Dynamic Bayesian Network ³	Gaussian Process ⁴	Our Work (Vector Autoregression)
Effective	~	*	~		
Scalable			★	★	\checkmark
Statistical Significance	≍	~	~	*	

Note: we only discuss existing methods. For example, it is possible for a future GP method to be developed that, e.g. does statistical significance *Meyer 2007, Zoppoli 2010 Opgen-Rhein 2007, Yao 2015 Hartemink 2001, Young 2013 Penfold 2015, Penfold 2012*

Approach

BETS: Bootstrap Elastic net regression from Time Series

	Our Work
Effective	Elastic Net, Bootstrap Stability Selection
Scalability	Massive Parallelization
Statistical Significance	Statistical Null and False Discovery Control from Permuted Data

Challenge: Causal Inference

- Vector Autoregression (VAR)
 - Granger Causality: X → Y if including past values of X helps to predict Y
 - Fast, effective, interpretable

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{i=1}^k \beta_i X_{t-i} + \epsilon_t$$

 $H_0: \beta_i = 0 \text{ for all } i$ $H_A: \beta_i \neq 0 \text{ for some } i$

Challenge: High Dimension

• Fit all causes simultaneously and regularize.

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$\hat{\beta} = \underset{\beta}{\arg\min} \|Y - X\beta\|_2^2 + \lambda f(\beta)$$

$$f_{\text{LASSO}}(\boldsymbol{\beta}) = |\boldsymbol{\beta}|_1$$

$$f_{\text{RIDGE}}(\boldsymbol{\beta}) = |\boldsymbol{\beta}|_2^2$$

$$f_{\text{ELASTIC}}(\boldsymbol{\beta}) = \alpha |\boldsymbol{\beta}|_1 + (1 - \alpha) |\boldsymbol{\beta}|_2^2$$

$$H_0: \beta_i^g = 0 \text{ for given } g \in G.$$
$$H_A: \beta_i^g \neq 0 \text{ for some given } g \in G$$

Challenge: High Dimension

• Fit all causes simultaneously and regularize.

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$\hat{\theta} = \operatorname{argemin} \| Y_t - Y_t \theta \|_{2}^2 + 2\varepsilon_t (\theta)$$

$$\hat{\beta} = \underset{\beta}{\arg\min} \|Y - X\beta\|_2^2 + \lambda f(\beta)$$

 $\begin{aligned} f_{\text{LASSO}}(\boldsymbol{\beta}) &= |\boldsymbol{\beta}|_1 \\ f_{\text{PIDCE}}(\boldsymbol{\beta}) &= |\boldsymbol{\beta}|_2^2 \\ f_{\text{ELASTIC}}(\boldsymbol{\beta}) &= \alpha |\boldsymbol{\beta}|_1 + (1-\alpha) |\boldsymbol{\beta}|_2^2 \end{aligned} \quad \text{Be} \end{aligned}$

Both sparsity & correlated genes

$$H_0: \beta_i^g = 0 \text{ for given } g \in G.$$
$$H_A: \beta_i^g \neq 0 \text{ for some given } g \in G$$

Evaluation

- DREAM4 Network Inference Challenge
- 100 genes, 21 timepoint time series, 10 replicates

Performance

- Enet: Rank by coefficient
- 7th/16, but best of VAR

Challenge: Robustness

- How sensitive are inferred edges?
- Bootstrap Frequency:
 - Infer from 1000 Samples with replacement

Performance

- BETS: Rank by bootstrap frequency
- Huge improvement! 3rd/17

Challenge: Scalability

- Enet: 3000 fits
 - 40 hrs (~1 min/fit)*
- BETS: 1000 networks x 3000 fits each
 214 days!
- Solution: Massive Parallelization
 - 28,000 jobs on Della cluster
 - Complete in 4 days!

Timing

Method	Parallelized?	DREAM: 100 gene Elapsed Time	GGR: 2768 gene Real Time
CSI	Yes	9.2 hr	3 days per gene was insufficient, now 7 days per gene
Jump3	No	45 hr	Failed to Complete
<u>BETS</u>	Yes	4.8 hr	4 days

Evaluation

• Apply to GR

- 31000 edges, FDR 0.2

- Held-out Dataset: <u>Over-expression</u>
 - Gene TF is biologically set to a higher level
 - Consider edges: TF \rightarrow G
 - Compute G's fold-change between overexpression, original
 - Edge = logit(FC)?

Validation Results

- Is-Positive-Edge ~ logit(log2 fold-change)
 Pos = logit(-0.6848* log2FC + -3.7622)
 - Log2fc p-value: 0.000186
- Is-Negative-Edge ~ logit(log2 fold-change)
 Neg = logit(0.4176 * log2FC 3.9617)
 Log2FC p-value: 0.165
- Is-Edge ~ logit(abs-log2 fold-change)
 - Edge = logit(0.3718* abs-log2FC 3.2250)
 - Abs-log2FC p-value: 0.0964

Interesting Edges?

- Search Space: 31000
- Metric: Bootstrapped coefficient with variance over time

Conclusion

- We develop a novel method based on VAR to build causal networks from gene expression time series.
- 2. We address challenges of causal inference, statistical significance, and scalability.
- 3. We test our method extensively against other methods and data types.

Acknowledgments

Engelhardt Lab (Princeton)

Bianca Dumitrascu

Brian Jo

Barbara Engelhardt

Ari, Derek, Allison, Greg, Izzy, ...

Reddy Lab (Duke)

Ian McDowell Tim Reddy Data collection Team

Extra

-log(p-value) for permuted tests