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Abstract

Gene regulatory network inference holds great potential to uncover the biological

mechanisms of disease and inform downstream experiments. However, effective infer-

ence of such causal relations is not straightforward. Methods for network inference

must demonstrate accuracy to handle molecular interactions, statistical significance

to decide on thresholds, and scalability to handle high-throughput sequencing as-

says. We introduce BETS (Bootstrap Elastic net regression from Time Series) to

address these issues. BETS improves network inference in three ways: 1) it uses

the elastic net regression penalty to handle correlated genes, 2) it ranks edges based

on a new measure of their stability, the ”bootstrap frequency”, and 3) it is highly

parallelized, allowing analysis of datasets of thousands of genes in only a few days.

Through these three innovations, our method has ranked 3rd in AUROC (out of 17)

and 6th in AUPR (out of 22) in the DREAM4 100-gene community benchmark for

gene regulatory network inference. Importantly, our method is one of the fastest

methods compared with methods of similar performance . We next run on the GR

project data, consisting of 2768 differentially-expressed genes across 12 timepoints.

We infer a causal network of 31,945 edges, which we evaluate on multiple sources of

held-out data, including over-expression data from the same experimental setup and

literature-curated regulatory relationships.
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Chapter 1

Introduction

Causal networks are a fundamental model for understanding how cells develop and

respond to the environment as dynamic entities [15, 24]. The primary unit of con-

trol within a cell is the protein. Translated from gene transcripts, proteins control

everything from metabolic breakdown to hormone release to immune system alerts.

Proteins also interact (activate or repress) with each other’s production at the gene

level. These interactions form a complex causal regulatory network [24]. However,

direct protein levels are difficult to assay [24].

Gene regulatory networks provide an approximate description for the causal reg-

ulatory dynamics between proteins. Gene transcript levels, easily measured by next

generation sequencing technologies, can be used as a proxy for protein levels [56, 24].

Network inference methods vary widely in both framework and effectiveness. Yet,

even if they are only marginally effective, they can still be useful for biologists: they

help biologists narrow the subset of genes and interactions to follow up on with direct

experimentation. In this thesis, we study the problem of gene regulatory network

inference from gene expression time series.

We are specifically interested in understanding the glucocorticoid genomic re-

sponse. Glucocorticoids are used to control overactive immune reactions [45, 46, 7, 31].
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However, they lead to metabolic side effects, such as diabetes and obesity [11, 51]. We

aim to understand the gene regulatory network behind the glucocorticoid response,

with the ultimate goal of designing improved, targeted drugs for different pathways.

We use gene expression time series data collected from the Glucocorticoid Receptor

(GR) project; we shall refer to this as the GR data.

From a data science perspective, the problem of regulatory network inference from

time series is difficult for two main reasons: causal inference and high dimensionality.

Inference of a gene X causing a gene Y based on time series is challenging because

there are multiple ways the regulatory relationship could appear: it could, for exam-

ple, be nonlinear or nonstationary. High dimensionality (i.e. when the number of

predictors, or genes, exceeds the number of samples) is common among gene expres-

sion assays because there are about 18000 protein-coding genes. The dimensionality

adds several challenges: first, many well-established statistical tests fail in the high-

dimensional setting, and it is difficult to account for all possible effects from the

other genes in a relationship. Moreover, methods must scale to the high dimension

of thousands or even tens of thousands of genes.

In this work, we develop BETS (Bootstrap Elastic net inference from Time Se-

ries), a form of vector autoregression (VAR) that addresses the major challenges of

regulatory network inference. We build off of the VAR framework due to its simplic-

ity, speed, and empirical effectiveness [25, 57, 27]. BETS’ key contribution is to

use stability to rank edges as opposed to coefficients. That is, we are more

confident in an edge’s validity if it is stable to small perturbations to the data (in the

form of bootstrap samples).

BETS is effective at causal inference, provides statistical significance,

and scales to large datasets. BETS successfully infers causality from high-

dimensional gene expression time series, being the top-performing method of its class

and competitive with other top methods on the DREAM4 100-gene Network Infer-
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ence Challenge [29, 38]. It is faster than many methods of similar performance due to

its use of parallelization and the elastic net penaltyl. We benchmark BETS against

methods from a literature review, as well as in-house runs of 5 other methods based

on mutual information, decision trees, and Gaussian processes. We then use BETS

to infer and analyze 2 networks from the Glucocorticoid Receptor (GR) project. We

analyze the bootstrap procedure to understand the correspondence of the original

fits with the bootstrap fits. Finally, we evaluate our inferred network on sources of

external data, including an over-expression dataset and a literature-curated network.
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Chapter 2

Background and Related Work

2.1 Gene Regulatory Network Inference Methods

Much of this literature review is based on a similar review performed in my junior

thesis work [27].

A variety of approaches for causal inference in gene regulatory networks have

been studied over the past decade. We review the approaches and discuss several

comparison studies. A more detailed treatment can be found in [24].

• mutual information: Compute the mutual information between genes’ ex-

pression profiles to declare causal edges.

• vector autoregression: Regress one gene’s expression values as a (usually

linear) function of other genes’ previous expression values

• ordinary differential equation: Regress one gene’s expression’s derivative as

a (usually linear) function of other genes’ current expression levels

• dynamic Bayesian network: Perform a causal graph search to find the graph

with maximizal posterior probability
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• decision tree: Fit one gene’s state as a decision tree function of other gene’s

expression levels

• Gaussian process: Fit one gene’s state as a function, from a Gaussian process

distribution, of other gene’s expression levels

2.1.1 Mutual Information

Mutual information (MI) methods compute the mutual information between the ex-

pression values of genes X and Y . In the time series setup, for a given lag k, the

causal gene’s lagged values are used with the effect gene’s current values [28, 25].

Ik(X, Y ) =
T∑
t=k

P (Xt−k, Yt) log
P (Xt−k, Yt)

P (Xt−k)P (Yt)
(2.1)

Methods such as Context-likelihood of Relatedness (CLR) [10], Maximum Relevance-

Minimum Redundancy Network (MRNET) [33], and ARACNE [30] find gene network

edges using the mutual information between lagged values; the key difference is how

each accounts for possible indirect interactions and background correlations. CLR

computes a background distribution of MI values involving X as a cause or Y as

an effect, and then declares significant edges based on that background distribution.

MRNET greedily searches possible edges using the maximum relevance-minimum

redundancy principle. It selects causes that maximize the relevance (mutual informa-

tion with the effect) minus the redundancy (mutual information with present causes).

ARACNE computes all pairwise mutual information values and eliminates direct

edges in triplets.

MI methods have the advantage of being simple and fast; this year, tl-CLR, a

time-lagged version of CLR, was one of the top performers on the DREAM4 100-gene

challenge [12], surpassing historically poor performance by these methods [38]. How-

ever, mutual information does not give immediate insight into the sign (i.e. activation
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or repression) of genes’ relation because it is a nonnegative metric. [33, 61]

2.1.2 Vector Autoregression

Vector autoregression (VAR) fits a gene’s expression as a (often linear) function of the

lagged expression values of other genes, the ”predictors” [53]. ”Granger Causality”

methods, in which X → Y if including X in our predictors significantly improves our

ability to predict Y , tend to fall into the VAR framework [13]. For a given lag K and

genes X and Y , VAR fits:

Yt =
K∑
i=1

αiYt−1 +
∑
g∈G

K∑
i=1

βgiX
g
t−i + εt (2.2)

Older VAR analyses used pairwise fits and parametrized statistical tests to detect

edges [35, 53, 60]. However, the high number of possible predictors in genome-wide

sequencing assays poses challenges to these analyses, requiring these functions to be fit

using regularization techniques such as LASSO [26, 50], James-Stein Shrinkage [36],

or Ridge regression [57]. Nonlinear, kernel-valued functions have also been used for

the regression [23]. Only 3 VAR methods: LASSO, GCCA, and OKVAR-Boost, have

been tested on the DREAM4 data [38, 12]. We develop BETS, the top-performing

vector autoregression method on the DREAM4 100-gene challenge. The performance

results from our novel combination of the elastic net penalty and bootstrap fits for

stability selection.

2.1.3 Ordinary Differential Equation

Ordinary differential equations (ODE) fit the derivative of a gene Y ’s expression as

a function of all current gene expression values Yt, X
1
t , . . . , X

G
t [24, 3, 5].

dYt
dt

= f(Yt, X
1
t , . . . X

G
t ) + εt (2.3)
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Time-Series Network Identification (TSNI) used a linear ODE with spline inter-

polation to gain more timepoints [3]. Inferelator used a special piecewise linear ”g”

function in their ODE [5]. The function used in an ODE can also be adapted to be

more complex and nonlinear, for example using S functions or polynomials, but the

parameterized types often have too many parameters to be estimated accurately from

the limited data [15].

2.1.4 Dynamic Bayesian Network

Dynamic Bayesian networks (DBN) search the space of possible causal graph struc-

tures and identify the structure with the highest posterior probability given the data

[21, 14, 58]. Where pa denotes the parents, i.e. causes, of a given gene node:

P (X1:n
1:T ) =

T∏
t=1

n∏
i=1

P (X i
t |pa(X i

t)) (2.4)

G1DBN approximates the true causal graph using low-order conditional depen-

dencies [21]. BANJO proposes new graphs, checks for cycles, computes the score of

the network, and decides whether to accept it [14]. Many methods have also used hid-

den states [4, 43]. While they have been shown to be effective on smaller datasets [62],

they scale very poorly due to the superexponential growth of possible causal graph

structures [39, 57]. The one exception is ScanBMA, which uses a pruning method

based on Occam’s window to limit the search space and gain a speedup. However,

it has been less effective than approaches that are not based on dynamic Bayesian

networks [58].

2.1.5 Decision Tree

Decision trees can handle more complex relationships between genes than linear func-

tions. Thus, they have been used to improve upon linear methods in both the vector
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autoregression and ordinary differential equation settings.

For a gene Y , either its expression Yt or the derivative of its expression dYt
dt

,

respectively, is modeled as a decision tree function (DT) of previous expression values

[19, 12].

Yt = f(Yt−i, X
g
t−i) + εt, f ∼ DT (2.5)

dYt
dt

= f(Yt−i, X
g
t−i) + εt, f ∼ DT (2.6)

Two recent methods, Jump3 [19] and dynGENIE3 [12], are among the top-performing

methods on the DREAM4 100-gene Challenge. Jump3, which combines hidden pro-

moter states and ”jump trees”, is relatively slower due to its scaling at O(N4); mean-

while, dynGENIE3, which uses ordinary differential equations and decision trees, has

been one of the fastest methods, scaling to datasets of about 2000 genes in only 90

minutes. One limitation of decision tree methods is that they only produce a ranking

of edges, without a framework for setting a significance threshold [19, 12]. Moreover,

these rank edges based on their positive ”feature importances” without accounting

for the sign. Like mutual information, decision trees do not allow determination of

the activation or repression relationship between the genes.

2.1.6 Gaussian Process

The Gaussian process (GP) is a distribution over continuous functions. Gaussian

process methods fit a gene Y ’s expression Yt as as a function of its parents pa(Y )’

s expression levels Xpa(Y ), where the function is drawn from the Gaussian process

distribution.

Yt|Xpa(Y )
t−1 ∼ N (Yt|µ(X

pa(Y )
t−1 ), K(X

pa(Y )
t−1 )) (2.7)
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As with decision trees, these seek to allow more flexible relationships between genes

without having excessive parameters to fit. Gaussian processes, like dynamic Bayesian

networks, perform a search over causal graphs. As a result, they still suffer from the

same scalability issues, requiring users to limit the number of possible regulators for

a given gene. Typically this is set to 2 or 3, resulting in O(G2) and O(G3) scaling

respectively, where G is the number of genes in the dataset.

Two primary methods have been developed, GP4GRN, which fits the derivative

and uses separate hyperparameters for each model [1], and CSI, which fits the raw

expression level and shares hyperparameters across genes [37]. CSI is the best per-

forming method on the DREAM4 100-gene challenge in both AUROC and AUPR,

while GP4GRN has also been highly effective [38].

2.2 Comparison of Methods

Many studies have evaluated the effectiveness of these causal inference methods in

simulated and real gene expression data. We focus on those involving vector autore-

gression both for concision and because our method is based on vector autoregression.

The main finding is that VAR performs effectively on data of similar time interval

and high dimensionality to our GR dataset, which has a 1-hour interval and thou-

sands of genes (Chapter 3) [25, 57]. However, in other studies, VAR was inferior to

the dynamic Bayesian network (DBN) and Gaussian process (GP) for shorter and

low-dimensional time series [62, 37].

Lopes [25] assess vector autoregressions (VAR), dynamic Bayesian networks (DBN),

and mutual information methods (MI) on three microarray datasets: a 2006-gene fly

dataset with hour-long time intervals (primarily) across 22 hours [18], a E. Coli dataset

with 10-50 minute time intervals across 5 hours [55] and a 1000-gene Yeast dataset

with 5 minute time intervals across 2 hours [41]. The method accuracy was evaluated
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by comparison with known interactions in a database. The authors found that the

lag-1 vector autoregressive models, ”VAR(1) + lars” and ”simone”, performed the

best on the Fly dataset with AUPRC of over 0.39. This suggests that VAR methods

are effective for data of the hour-long time intervals, which is the case for our GR

data.

Yao also compare vector autoregressions (VAR), dynamic Bayesian networks (DBN)

and mutual information methods (MI) on data simulated from a hierarchical gene net-

work. This data had the number of genes, 1000, exceeded the number of timepoints,

20. They find that top two methods are their own developed prior-knowledge VAR

and the lasso-penalized VAR. They also found that the DBN could not complete

when working with data of that scale, and that the MI methods did not perform as

well as VAR. Yao’s simulation work supports our use of VAR in the GR data: first,

the simulated data is similar to our setting, with the same high-dimensionality and

short time series, and second, it is computationally tractable.

Hlavácková-Schindler compared vector autoregression, copula vector autoregres-

sion, and dynamic Bayesian networks, finding that vector autoregresssions outper-

form and run faster than dynamic Bayesian networks. They concluding that DBNs

are more well-suited to modelling local dynamics than larger networks [16].

Two studies found that VAR did not perform as well as other approaches. Zou

specifically compare DBN and VAR, finding that DBN outperforms VAR on a short,

simulated timeseries of 5 genes as well as better performance on a true clock network.

They recommend that VAR be used on longer time series while DBN on shorter ones

[62]. Meanwhile, Penfold provide the broadest comparison of vector autoregressions

(VAR), ordinary differential equations (ODE), dynamic Bayesian networks (DBN),

and Gaussian process (GP). On the simulated DREAM4 100-gene network with 21

timepoints, they found that GP outperformed DBN, which outperformed VAR/ODE.

For the in-vivo networks (a 5-gene yeast network and 7-gene clock network), Penfold

10



again find that GP outperformed DBN, which outperformed VAR/ODE; all per-

formed better than random.

These latter two findings suggest that for small-sized networks, GP or DBN are

more effective than VAR. The main drawback is that both GP and DBN can be

quite computationally challenging and require sophisticated implementation. Thus,

we chose to still focus on VAR for its simplicity, interpretability, and speed.

2.3 Challenges in High-Dimensional vector autore-

gression

Here, we review vector autoregression methods organized by the challenges faced

by high-dimensional gene regulatory network inference: confounding, and local and

global statistical significance.

Any strong pairwise relationship between genes could be the result of confounding,

because there are 18,000 genes in the genome which are often strongly correlated

[53]. To handle this issue, genes are often regressed simultaneously using a shrinkage

penalty to find a unique solution. Lozano [26] and Shojaie [50] introduce the Lasso

penalty to regularize the VAR fit. The key contribution of each methods is a procedure

for choosing the optimal lag. Opgen-Rhein use a James-Stein shrinkage method to

regularize coefficients [36], while Yao introduce a 2-step procedure based on prior

knowledge and Ridge Regression [57]. Besides shrinkage methods, Tam did a two-

step procedure where they first screen possible predictors for a gene by using pairwise

regressions, and then use those predictors in a joint fit for the gene [53].

In our work, we use the Elastic Net penalty, which has received less focus than

the Lasso or Ridge penalties. Elastic Net is an ideal intermediary between Lasso and

Ridge. Elastic Net is more robust to correlated predictors than Lasso; this is critical

because there are many highly correlated genes in our time series data which may

11



jointly be involved in regulation, and the Lasso penalty will make an unstable choice

one of these predictors [63]. Elastic Net also provides a sparse, more interpretable fit,

unlike the Ridge penalty which has most coefficients set to be nonzero.

The second challenge is declaring whether a single cause-effect relationship be-

tween genes X and Y , is statistically significant. This is done using the Granger

Causality framework, where X causes Y when including the information from X sig-

nificantly improves one’s ability to predict Y [13]. Significance is classically assessed

using an F-test of whether using X significantly reduces the error in predicted out-

put Y [35, 57]. However, the F-test fails in the high-dimensional setting because

the degrees of freedom becomes undefined (i.e. not positive). Furthermore, sparse

estimators such as the Lasso or Elastic Net have non-Gaussian limiting distributions

with a point mass at zero. Thus, they do not provide valid confidence regions or

p-values [6].

One can address the challenges of high-dimensional significance testing using either

analytical or permutation-based approaches. Analytical approaches adapt classical

significance testing to the high-dimensional setting. For example, Opgen-Rhein de-

velop a significance testing framework based on partial correlation coefficients, which

facilitates small-sample testing and accounts for dependencies among estimated coef-

ficients [36]. Buhlmann discuss two approaches developed in the statistics literature:

multisample splitting and projection [6]. Multisample splitting involves splitting a

sample into a training and validation set. In the training set, one uses the Lasso

penalty to select the possible predictors (i.e. causes) for a given output (i.e. effect).

This returns us to the low-dimensional setting where the number of predictors lies be-

low the number of samples. In the validation set, one then fits this low-dimensional

model and performs classical significance testing. Multiple sample splits are per-

formed to get a p-value that is robust to the choice of split. Another approach is

to use projection, a bias-corrected Lasso estimator, which has a Gaussian limiting

12



distribution [6]. We chose not to use analytical approaches because this still an ac-

tive area of research and many assumptions must be made for these approaches to be

consistent.

One can also use permutations to generate null hypotheses for significance testing.

These have the appeal of being less model-dependent and more data-driven than the

analytical approaches. Yao attempt to use a Monte Carlo simulation to test the null

hypothesis of a zero coefficient [57]. However, their simulation is from a uniformly

random sample that differs in multiple ways from the empirical distribution, including

in mean and variance, which risks having excessively liberal rejections. Alternatively,

Buhlmann suggest a stability selection method, in which the regression model is fit on

multiple sub-samples (or bootstrap samples) and the frequency of a certain variable’s

appearance in the model is computed [6]. This proportion can then be linked to a

False Positive error metric. This stability selection is especially elegant because it

can be applied to any model. As long as data can be inputted and results can be

outputted, stability selection can be performed.

In our work, we use both permutations and stability selection for our high-

dimensional significance testing. We first develop an edgewise statistical null for

declaring significant individual networks. This serves as a replacement to the un-

defined F-test used in the classical setting. Unlike Yao, we perform permutations

directly on the original data and thus preserve properties of the empirical distribu-

tion such as the mean and variance. This prevents edges from being declared signifi-

cant solely due to unnecessary differences between the original and null distributions.

Then, we develop a global null distribution of possible bootstrap frequencies and use

this to perform FDR thresholding of our networks. This is inspired by Buhlmann’s

stability selection; edge confidence is assessed by its frequency under small perturba-

tions to the input data.
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Chapter 3

Data

3.1 DREAM4 Network Inference Challenge

The DREAM4 100-gene Network Inference Challenge is the most comprehensive com-

munity benchmark of Gene Regulatory Network Inference methods, to our knowledge.

At least 20 methods, not including our own, have been evaluated on this challenge

[38, 20, 58, 19, 12]. We work on the data of the 100-gene network inference challenge

from time series.

There are 5 datasets, each with its own simulated network of 100 genes. Each

dataset consisted of 10 timeseries of 21 timepoints. The initial condition is set to

the steady state measurement of a wild-type. For the first half of the timeseries, a

“drug perturbation” is applied; this affects about 1/3 of genes. For the second half,

the perturbation is removed and the system is allowed to relax back to the wild-

type state. Network topologies were generated based on subnetworks from known

transcriptional regulatory networks of E. coli and S. cerevisiae [29].

Dynamics of the networks were simulated using a detailed kinetic model of gene

regulation. This included both independent and synergistic gene regulation. More-

over, both transcription and translation are modeled. Though protein concentrations
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are calculated, only mRNA concentrations are provided as in the real-life situation

of gene expression assays. Simulations use stochastic differential equations to model

internal noise in network dynamics. In addition, measurement noise, using a similar

model to a mix of normal and lognormal noise, is added to the expression datasets

[29].

Evaluation is typically done by looking at the Area Under the Precision Recall

curve (AUPR) or the Area Under the Receiver Operating Characteristic (AUROC).

Thus, any network inference method that provides a ranking of possible edges can

be evaluated on this dataset. Indeed, even methods that do not provide a method

to threshold the network (e.g. to control the proportion of false positives), such as

decision tree methods like dynGENIE3 [12] and Jump3 [19], can be evaluated [29].

3.2 Glucocorticoid System

3.2.1 Joint-unperturbed Gene Expression Data

We study gene expression data from the Glucocorticoid Receptor project; henceforth

we will refer to this as the “GR” data. There was an “original” dataset of 4 replicates

that stimulated by the glucocorticoid dexamethasone, and an “unperturbed” dataset

of 3 replicates that allowed the system to relax after stimulation by dexamethasone.

Each profiled gene expression across 12 timepoints.

We integrated these into a “joint-unperturbed”” dataset with 7 replicates. The

idea was that any causal relationship between genes should still be preserved under

different environments, as claimed in causal graph theory [39]. This also increased

the sample size of our dataset from the original dataset’s 48 replicate-timepoint pairs

to the joint-unperturbed dataset’s 84 replicate-timepoint pairs.
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Original Gene Expression Data

The description below of the original GR Data is largely drawn from my junior thesis

[27]. I include it in full detail here for completion.

The glucocorticoid receptor (GR) regulates the transcription of a variety genes

controlling the metabolism and immune response [46]. It is activated via binding to

glucocorticoids; the bound complex then enters the nucleus and activates or represses

the transcription of a variety of genes, both on its own and as bound to other pro-

teins [46, 51, 7, 11, 31]. The GR dataset seeks the comprehensive characterization

of the genomic response to glucocorticoids through the measurement of changes in

chromatin accessibility, epigenetic state, transcription factor binding, chromatin loop-

ing, and gene expression at time points across 12 hours of glucocorticoid, specifically

dexamethasone, treatment [31]. Gene expression is profiled using RNA-Sequencing

[31]. We extracted the temporal profiles of the genes from the GR expression data

set across the 12 time points: {0, 0.5, 1− 8, 10, 12} hrs of Dex exposure.

We select the temporal profiles of those genes whose average expression across

time were higher than 2 TPM and that passed the edgeR [47] criteria for differential

expression. To measure average expression, we first averaged the genes expression

value per timepoint, and then took the average of those timepoint averages. For

differential expression, we used the same method as in [31]: for each timepoint, we

tested each genes expression against its basal expression at an FDR threshold of

0:05, such that the resulting selected genes had expression different from the basal

expression for at least one time point. These steps lead to a processed data set of

2767 differentially expressed genes. Finally, we added NR3C1, which encodes the GR

transcription factor. NR3C1 was not found to be differentially expressed at the FDR

threshold of 0.05, but was so at an FDR threshold of 0.2 [31]. In the end, we had a

set of 2768 genes, which included 226 transcription factors. The resulting temporal

profiles were further log transformed (base e) and corrected for surrogate variables
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using SVAseq [22].

There were 4 replicates of the GR gene expression dataset across time. We split

the data by replicates. All replicates besides replicate 1 had a measurement for each

timepoint. Replicate 1 was missing timepoints 5 and 6 hrs, so we performed a linear

imputation for these values in the log-transformed, surrogate-corrected space.

Unperturbed Gene Expression Data

The unperturbed gene expression dataset intends to measure the abatement of the

glucocorticoid response; i.e. the return of the system to the basal state once drug

exposure ends. While in the original dataset, gene expression is measured over the

12-hour course of continued dex exposure, in the unperturbed dataset, the system

is exposed for 12-hours, and then the conditioned media is replaced and the drug is

removed. Thus, gene expression is measured over an additional 12-hour timecourse

after the drug removal.

There were 3 replicates of this dataset across time. As in the original data (Section

3.2.1), the unperturbed gene expression consists of the time points {0, 0.5, 1−8, 10, 12}

starting at the point of dex removal. As in the original data, the resulting temporal

profiles were further log-transformed (base e) and corrected for surrogate variables

using SVAseq [22]. The same set of 2768 genes and the same normalization scheme

was used as in the original data.

3.2.2 Over-expression Data

In order to understand the role of various transcription factors in the GC response,

each was separately over-expressed concurrently with drug exposure to generate a

new dataset. By over-expressed, we mean that the expression level is maintained at a

constant higher level than would be sustainable under biological conditions. Besides

the over-expressed gene, all other experimental conditions such as drug exposure and
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cell media as in the original gene expression data. Thus one can better isolate the

causal effect of that specific gene.

For each of the transcription factors CEBPB, CEBPD, FOSL2, FOXO1,

FOXO3, KLF6, KLF9, KLF15, POU5F1, and TFCP2L1, a separate over-expression

dataset was created. This dataset had 3 replicates. Each replicate consisted of mea-

surements at 5 points during the 12-hour time course: {0, 1, 4, 8, 12} hours after the

start of the experiment. As with the previous datasets, gene expression values were

log-normalized (base e) and corrected for surrogate variables using SVAseq [22].

Log Fold-changes

To assess the effect of the over-expressed gene on the system, log-2 fold-changes of

genes between the over-expressed dataset and the original data were computed as

follows. Each dataset is subsetted to the timepoints {1, 4, 8, 12} hours after the start

of the experiment. For each timepoint T and each gene G, G’s expression values

(across multiple replicates) at T is averaged. Then the log-2 fold change between G

in the over-expression data and G in the original data is computed for T . Finally, of

the log-2 fold changes for each timepoint, the one that is greatest in absolute value

is chosen. (for example, if G’s log-2 fold change is 0.5 for time 1 and −10 for time 2,

then G’s final fold-change is set to be −10).

3.2.3 Literature-curated Network

We validated our network on a literature-curated Glucocorticoid Receptor Regulatory

Network, in which each edges was an experimentally validated regulatory interaction.

This was provided by the NDeX database [42, 40]. The name of the network was

“Glucocorticoid receptor regulatory network”. Multiple edge types were listed; we

limited only to those of type “controls-expression-of.”

Data was given in the form of protein product names and needed to be transformed
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into gene names. The corresponding gene for each protein was found using Uniprot

[9]. Thus, regulatory edges between genes were found. Certain proteins, like the

Cbp/p300, consisted of two gene products, so these were split into two genes and the

corresponding edges were drawn for both nodes. The final network consisted of 95

edges among 61 unique genes. There were 29 unique causal genes and 31 unique effect

genes.

We find minimal intersections of the curated network’s gene set with our data’s

genes (Section 3.2.1). Only 5 of the 29 causal genes were present in our data: FOS,

JUN , NR3C1, NR4A1, STAT1. Only 6 of the 32 effect genes were present in our

data: AFP , BAX, CXCL8, FGG, SGK1, and V IPR1.

By limiting the literature-curated network only to those genes that were present

in our data, we reduced it from 95 to 7 edges: JUN → AFP , NR3C1 → SGK1,

NR3C1 → CXCL8, NR3C1 → AFP , NR3C1 → FGG, NR3C1 → BAX, and

NR3C1→ V IPR1. This was a sobering limitation. 6 out of 7 edges had NR3C1 (i.e.

the gene that encodes the glucocorticoid receptor) as the cause. However, NR3C1

was lowly differentially expressed, at an FDR of 0.2 (Section 3.2.1).

3.3 Gene Annotations

The description below of the gene annotations is largely drawn from my junior thesis,

[27]. I include it in full detail here for completion.

In Results (Chapter 5), we perform a variety of network analyses based on gene

annotations. This section describes those annotations.

We used four main classifications in our analysis of genes: Immune, Metabolic,

and Transcription Factor. We now describe the classification method.

Immune genes were called using two primary sources. The first is the Gene Ontol-

ogy annotation “Immune” ( GO:0002376 ) [2]. To emphasize experimentally verified
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annotations, we only used the evidence codes EXP, IDA, IGI, IMP, IPI, IC, TAS.

The second is the Gene Ontology Consortiums curated, ranked list of immune-related

genes based off of multiple databases and experimental evidence [8]. For the GO an-

notation, We selected all those genes with score greater than or equal to 7. This

resulted in 616 immune genes overall, and 109 immune genes in our list of 2768 genes

(differentially expressed + GR).

Metabolic genes were called using two primary sources. The first is the Gene

Ontology annotation “carbohydrate metabolic process” GO:0005975 [2]. We only

used the evidence codes EXP, IDA, IGI, IMP, IPI, IC, TAS. The second is the Gene

Set Enrichment Analysis curated list of metabolic-related genes [52]. We searched only

among those with experimental evidence: the Canonical, KEGG, BIOCARTA, and

Reactome pathways. We used the following 4 search queries: “gluconeogenesis OR

(glucose AND metabolism) OR glycolysis”, “lipid AND metabolism”, “Diabetes”,

“Obesity”. We chose these queries to ensure we covered genes implicated in both

metabolic processes and disorders, which may be affected by GR. Combining these,

we found 544 metabolic genes overall and 120 in our list of 2768 genes. Finally,

65 genes were both immune and metabolic overall, and 12 were both immune and

metabolic in our geneset.

Transcription Factors were called using the Bioguo database of Human Transcrip-

tion Factors [59]. There were 1463 factors overall and 226 present in our list of 2768

genes.

GR direct targets were called based on the binding data of GR [31]. These genes

were found to be up-regulated at timepoints 0:5, 1, or 2 hours after initial treatment

with dexamethasone, and had GR binding within 10 kb of the transcription start

site. Up-regulation was called based on a differential expression test between a genes

expression at one timepoint with the basal timepoint at FDR 0:01. This calling

method included several positive controls such as DUSP1 [49] and PER1 [44]. The
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method resulted in 111 genes. All 111 of these genes were included in our set of

differentially expressed genes by definition.

GR-associated genes were called first using the Gene Ontology annotation “glu-

cocorticoid receptor signaling pathway” GO: 0042921 [2]. We only used the evidence

codes EXP, IDA, IGI, IMP, IPI, IC, TAS. The second set was from the Gene Set

Enrichment Analysis curated list of metabolic-related genes [52], searching the Cah-

nonical, KEGG, BIOCARTA, and Reactome pathways. We used the search query

“glucocorticoid” and chose the result that said “PID REG”, which is curated by

Nature and the National Cancer Institute.
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Chapter 4

Methods

4.1 Causal Inference Framework: BETS

Our method builds upon my junior thesis work [27], so sections 4.1.2 through 4.1.6

were largely drawn from my junior thesis. The key innovations of our method are

discussed in Sections 4.1.7 and 4.1.8.

Bootstrap Elastic net inference from Time Series (BETS) is a vector-autoregressive

approach to causal inference from gene expression time series data. It is based on the

principle of Granger Causality [13], in which a gene g is said to be causal for another

gene g′ if using information from gene g significantly improves our ability to predict

gene g′.

BETS uses the elastic net penalty to handle the high dimensionality of the time

series. It infers statistically significant networks from bootstrapped samples and then

declares a global significant network based on based upon the frequency of individual

edges among these networks; this is inspired by the stability selection procedure

outlined in Section 2.3.

The algorithm is run as follows:

1. Preprocess the data (Section 4.1.1).

22



2. Choose the Hyperparameters by minimizing the cross-validation error (Sec-

tion 4.1.4).

3. Fit the model on the original data and on the gene-specific null (Section 4.1.2).

4. Set a local statistical significance threshold for each edge and declare a

significant network (Section 4.1.5, 4.1.6).

5. Do steps 3 through 4 for 1000 bootstrapped samples (Section 4.1.7).

6. Do steps 3 through 4 for 1000 bootstrapped samples on an “umbrella” null

(Section 4.1.8).

7. Declare a significant global network based on an edge’s frequency among

the bootstrapped networks, controlling the global False Discovery Rate (Section

4.1.8).

4.1.1 Preprocessing

Out of two possible normalization schemes for the temporal profiles: zero-mean un-

standardized and zero-mean unit-variance, we choose the zero-mean unstandardized

version. Zero-mean unstandardized centers each gene temporal profile to have zero-

mean across time. Zero-mean unit variance centers each gene temporal profile to

have zero-mean, and then standardizes it to have unit variance. By gene temporal

profile, we mean the gene’s expression values across time for a single replicate. Be-

cause the variance of gene temporal profiles ranged from almost constant to drastic

increases and decreases, we chose to focus on the zero-mean unstandardized

normalization scheme because a unit-variance normalization would over-represent

the weak causal effects of genes with lower variability.
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4.1.2 Vector Autoregression Model

We used a vector autoregressive model (VAR) with lag L ∈ {1, 2} to fit temporal

gene expression profiles across multiple replicates of G genes over t ∈ {1, 2, . . . , T}

time points. Let g− ∈ {1, 2, . . . g − 1, g + 1, . . . , G}. Let Xg
t = [Xg

t,1, X
g
t,2, . . . , X

g
t,R]T

be the R × 1 vector of gene expression levels of gene g across R replicates at time t.

(for the DREAM data, R = 10, while for the GR data, R = 7). We modeled each

gene g as

Xg
t =

L∑
l=1

mg
lX

g
t−l +

L∑
l=1

∑
g′∈g−

βg
′,g
l Xg′

t−l + µεt (4.1)

where εt ∼ N (0, 1). In other words, the expression of each gene g is modelled as a

linear function of its and other genes’ L previous expression values, under independent

Gaussian noise. In Equation 4.1, mg
l represents the (scalar) effect size of gene g’s l-th

previous value, Xg
t−l, on its current value, Xg

t . βg
′,g
l represents the (scalar) effect size

of the l-th previous value of gene g′ 6= g, Xg′

t−l on gene g’s current value, X t
g. µ is

the the intercept term. One should note Equation 4.1 requires that t > l for the l-th

previous value, Xg
t−l , to exist.

One should note that the VAR assumes equally spaced timepoints. The time

interval for the GR data ranges from 0.5 up to 2 hours, and is therefore technically

in violation of this requirement. A counterargument is that the short intervals are

concentrated at the beginning (hours 0, 0.5, 1) where there is more likely to be activity,

and the long intervals are at the end (hours 8, 10, 12), where there is likely decreased

activity. Thus despite the theoretical violation, treating the timepoints as equally

spaced may not be entirely problematic [25].

To demonstrate how our model is fit in practice, we reformulate Equation 4.1

using matrix notation. Here, each row represents one timepoint per replicate. There

are T −L timepoints with t > L and R replicates, so there are R(T −L) samples, or
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rows, in total. Let N = R(T − L).

Let

Xg
t =



Xg
L,1

...

Xg
L,R

Xg
L+1,1

...

Xg
L+1,R

...

...

Xg
T,R



(4.2)

Xg
t is a N × 1 vector. We can similarly write Xg

t−l which is the same vector, but

replacing each entry with its l-th previous value. Now combine the L lagged vectors

of gene g, [Xg
t−1, . . . ,Xt−L] into Xg

t−l, a N × L matrix of the L lagged values of gene

g. Finally, let mg
l be a L× 1 vector of the L lagged coefficients.

Xg
t−l = [Xg

t−1 . . .X
g
t−L]

ml =


mg

1

...

mg
L


(4.3)

Next, let us formulate the component of Equation 4.1 involving the other genes g′

in matrix notation. Let Xg−
t−l be a N ×L(G− 1) predictor matrix of the genes g′ 6= g.

Each column is of form Xg′

t−l . Note the number of columns is L(G−1), because there

are G− 1 genes g′ and for each gene g′, there are L lagged values: Xg′

t−1, . . . , X
g′

t−L.

Xg−
t−l =

[
X1
t−1 . . . X2

t−1 . . . . . . XG
t−L

]
(4.4)
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Let βl be a L(G− 1)× 1 vector of the causal coefficients βg
′,g
l where g′ 6= g.

βl =



β1,g
1

...

β1,g
L

β2,g
1

...

...

βG,gL



(4.5)

We then seek to fit the model:

Xg
t = Xg

t−lml + Xg−
t−lβl + εt (4.6)

where εt is a N × 1 vector with each element εt,n ∼ N(0, 1).

To write in the most compact form, we can write

Xg
t−l = [Xg

t−lX
g−
t−l], β̄ =

ml

βl

 (4.7)

Note that Xg
t−l is a N × LG matrix and β̄ is a LG× 1 vector.

Thus in final form we would fit:

Xg
t = Xg

t−lβ̄ + εt (4.8)

With these equations prepared, we are ready to describe the penalized fitting

procedure.
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4.1.3 Penalized Regression

The ordinary least squares estimator fits the causal coefficients as:

β̂ = β̄ ∈ RLG

argmin
‖Xg

t − Xg
t−lβ̄‖

2
2 (4.9)

Here ‖ · ‖2 represents the l2-norm of a vector, i.e. the square root of the sum of

the sum of the vector’s squared coordinates. However, we are in the high-dimensional

setting: the dimension, LG exceeds the sample size N = R(T − L). For example, if

L = 1, the dimension LG = 2768 whereas our sample size N = R(T − L) = 44. As

a result, the ordinary least squares estimator is undefined. We must instead resort

to the use of penalized approaches such as LASSO (Least Absolute Shrinkage and

Selection Operator) [54], elastic net [63], and ridge regression [17]. These are designed

for β̂ to be sparse (only a few nonzero coefficients) and shrunk (reduced in magnitude).

We discuss the elastic net penalty, which is a more general case of the ridge and

lasso penalties. The elastic net fits the following objective:

β̂ = β̄ ∈ RLG

argmin
‖Xg

t − Xg
t−lβ̄‖

2
2 + λ(α‖β̄‖1 + (1− α)‖β̄‖22) (4.10)

Here ‖ · ‖1 represents the l1-norm and ‖ · ‖2 represents the l2-norm.

By setting α = 1 in the above equation 4.10, we obtain the Lasso objective

function. By setting α = 0 in the above, we obtain the Ridge objective function.

For the Elastic Net, we used the following ranges of hyperparameter values: λ ∈

{10−4, 10−3, . . . , 1}, α ∈ {0.1, 0.3, . . . , 0.9}. For Lasso, we used λ ∈ {10−5, . . . , 1}. For

Ridge, when we used {10−5, . . . , 1}, we found that the the optimal value selected in

some cases was the max 1 [27]. We thus expanded the range to {10−5, . . . , 106} to

ensure that we were not missing more optimal hyperparameters at larger values. At

this point, the optimal λ was found to be 100 (Table 4 in [27]).
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4.1.4 Hyperparameter Tuning

Hyperparameters were selected using leave-one-out cross-validation (LOOCV). The

hyperparameter (or pair of hyperparameters, for elastic net) that minimizes the mean-

squared error on the held-out datapoints is selected. More specifically, we first fix a

hyperparameter (λ, α). Then, for a given gene g and row index i, extract the i-the

row of Xg
t and Xg

t−l. Refer to this extracted validation set as (Xg
t )i and (Xg

t−l)i. The

remaining data is the training set, (Xg
t )−i, (X

g
t−l)−i.

First we fit our coefficient β̂g,iλ,α over the training set.

β̂g,iλ,α = β̄ ∈ RLG

argmin
‖(Xg

t )−i − (Xg
t−l)−iβ̄‖

2
2 + λ(α‖β̄‖1 + (1− α)‖β̄‖22) (4.11)

We then compute the fit’s prediction error on the validation set, ‖(Xg
t )−i −

(Xg
t−l)−iβ̂

g,i
λ,α‖22) . We repeat the fit β̂g,iλ,α and error for every row index i of Xg

t and for

every gene g. The mean held-out cross-validation error for (λ, α) is:

MSE(λ, α) =
G∑
g=1

R(T−L)∑
i=1

1

GR(T − L)
‖(Xg

t )i − (Xg
t−l)iβ̂

g,i
λ,α‖

2
2 (4.12)

The (λ, α) which minimizes the error in Equation 4.12 is selected.

4.1.5 Edgewise Statistical Null

We develop a statistical null to declare individual edges statistically significant. Bor-

rowing from the language of econometrics, a gene g is Granger-caused by a gene

g′ ∈ g− if using the past values of g′ can improve our prediction of gene g, given the

information from all remaining genes. In the language of vector autoregression, this

means that for at least one lag l, βg
′,g
l is significantly different from 0 [13]. The null

hypothesis, where the βg
′,g
l is equal to 0, is evaluated using a permutation test.
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In previous work, we explored two possible choices of nulls: the “global” and

“local” null [27]. The global null permutes every possible causal gene, i.e. all of

g−, while the local null only permutes the particular causal gene g’. In both cases,

the model is fit again over the permuted dataset to generate a null distribution of

coefficients, under the case where the causal time structure ought to be removed.

Based on our previous results, we choose to use the global null, because the

local null is difficult to reject due to having higher causal coefficients (Section 6.4.1

of [27]). We describe both for completion.

We first generated a single permuted dataset X̃G
t . For each gene, we independently

shuffled the expression values of each gene g ∈ {1, . . . , G} across time. This is done

separately for distinct replicates.

For the global null, we wish to model the hypothesis of no causal relations, from

any gene g′ ∈ g−, upon a given effect gene g. Thus, we use the unpermuted values

of the effect gene Xg
t and the permuted values of all other causal genes g′ ∈ g−, as

X̃g−
t . Permuting the effect gene Xg

t would allow us to test the significance of the

gene’s self-interaction, but we are only interested in testing significance of the causal

relations of other genes on the given gene. Thus we do not permute the effect gene g.

Null causal coefficients β̃g− are then fit as

Xg
t ∼ N (

L∑
l=1

mg
lX

g
t−l +

L∑
l=1

∑
g′∈g−

βg
′,g
l X̃g′

t−l, 1) (4.13)

For the local null, we wish to model the case of no causal relation from gene g′

upon gene g. Thus, we only use the permuted values of the causal gene g′, X̃g′

t , and

use the unpermuted values of the effect gene g, Xg
t and of all the remaining genes Xg

t

The null causal coefficient β̃g
′

is then taken from its fit in:

Xg
t ∼ N (

L∑
l=1

mg
lX

g
t−l +

L∑
l=1

∑
g′ 6=g,g′

βg
′,g
l Xg′

t−l +
L∑
l=1

βg
′,g
l X̃g′

t−l, 1) (4.14)
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4.1.6 Dataset-specific Statistical Significance

We develop a framework for declaring a significant network from a given dataset.

This can be applied to any dataset that is fit, for example the original GR data or a

bootstrapped version of it.

Similar to the null model, we consider two alternatives for controlling the False

Discovery Rate: a global approach and a local one. For a fixed lag, the global FDR

controls the rate of insignificant causal relations across the whole inferred causal

network, while the local FDR controls for the causal relations conditioning on the

specific effect gene. The local FDR may be more appropriate when there is a stringent

threshold for one effect gene; i.e. the null coefficients for the effect gene. Under the

global FDR, this would lead to a stringent threshold for all effect genes, while in the

local FDR, it would only lead to a stringent threshold for that specific coefficient.

Based on our previous results, we use the local FDR, because the global FDR

is difficult to reject due to having higher causal coefficients (Section 6.4.1 of [27]). We

describe both for completion.

Let β·,gl refer to the set of all lag-l causal coefficients for the effect gene g. Let β·,·l

refer to the set of all lag-l causal coefficients. Define β̃.,gl and β̃·,·l analogously for the

null coefficients.

We control the global FDR by fixing a lag l ∈ {1, . . . , L} and finding the threshold

Tl such that

|{|β̃.,.l | > Tl}|
|{|β̃.,.l | > Tl}+ |{|β.,.l | > Tl}|

< 0.05 (4.15)

For each gene pair (g′, g), g′ ∈ g−, a causal link g′ → g exists if for at least one

of the lags l ∈ {1, . . . , L}, |βg
′,g
l | > Tl

We control the local FDR by fixing a lag l ∈ {1, . . . , L} and an effect gene g and

finding the threshold T gl such that
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|{|β̃.,gl | > T gl }|
|{|β̃.,gl | > T gl }+ |{|β.,gl | > T gl }|

< 0.05 (4.16)

¡ 0:05 (15) For each gene pair (g′, g), g′ ∈ g−, a causal link g′ → g exists if for at

least one of the lags l ∈ {1, . . . , L}, |βg
′,g
l | > T gl The only difference from the global

FDR is that there is a threshold T gl specific to the effect gene g.

4.1.7 Bootstrapped Networks

Our motivation for fitting bootstrapped data was to understand the stability of the

inferred network. How would the network change if it were instead inferred from

a bootstrapped sample of the original data? Which edges would be preserved? As

acknowledged in [32], such questions are natural to ask, related to stability selection.

The authors apply stability selection to the problem of graph estimation (including

regression, graphical modeling, or cluster analysis), which on subsamples/bootstrap

samples and computes the frequency by which an edge appears. They prove that it

provides finite sample control for the Family-Wise Error Rate. However, we are more

interested in controlling the False Discovery Rate.

Refer to Figure 4.1. The key idea is to repeat the whole procedure described in

Sections 4.1.5 and 4.1.6. B = 1000 bootstrap samples are drawn from the data used

for the vector autoregression, i.e. the rows of Xg
t−l are sampled from replacement. (in

Figure 4.1, they are jointly represented as Xt). Recall each row Xg
t−l of represents

a distinct sample: a distinct timepoint × replicate pair, for example timepoint 5 of

replicate 3. Thus, in total there are (T − L)R rows.

For each bootstrap sample, the procedure described in Sections 4.1.5 and 4.1.6 is

performed: the original coefficients are fit. A set of null coefficients are also fit from

the edgewise permutation. These are used to declare a significant network. This

procedure is repeated for each bootstrapped sample. At the end, each edge’s boot-
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strap frequency, i.e. frequency among the significant bootstrap networks,

is computed.
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𝑋"# 𝑋"$ 𝑋"#%%%

~𝑋"#
~𝑋"$ ~𝑋"#%%%

𝛽	# 𝛽	$ 𝛽	#%%%~𝛽	# ~	𝛽	$ ~	𝛽	#%%%

sig	𝛽	# Sig	𝛽	$ sig	𝛽	#%%%

Pedge

Pedge

…......

Get	1000	Bootstrap	
Samples

Get	Permuted	
Data

Get	Null	
Coefs

Get	Original	
Coefs

Find	Significant	Coefs

Get	
Significant	
Network

Get	Frequency	of	each	
Edge	over	all	bootstrap	
networks

Figure 4.1: Illustration of Bootstrap Frequency Procedure for assessing the

robustness of edges. The regression procedure is performed for B = 1000 bootstrap

samples and significant networks are declared. Then, one counts the frequency of each

edge’s appearance across the significant networks.

4.1.8 Global Statistical Significance

From the previous sections, we have produced a set of bootstrap frequencies πg′,g for

each edge g′ → g. To determine the appropriate cutoff for the network, we generate

a null distribution of bootstrap frequencies: first, we generate a second permuted

dataset in which each gene’s expression levels are independently randomized across

time. Then, we run the steps of sections 4.1.2 through 4.1.7 on this permuted dataset

to get the null bootstrap frequency of each edge, π̃g′,g.
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Finally, we control the global FDR at 0.2 by finding the threshold Tb such that

|π̃g′,g > Tb|
|π̃g′,g|+ |πg′,g|

< 0.2 (4.17)

We illustrate the corresponding distributions and possible thresholds Tb (Figure

4.2).

Figure 4.2: FDR thresholds for Bootstrap Frequency Procedure over the

original and null distributions. For a given FDR, the corresponding green thresh-

old Tb is found in the bootstrap frequency space. Edges in the original (red) distri-

bution with bootstrap frequency above Tb are declared significant.

4.1.9 Implementation

We implemented BETS in Python2, using the libraries numpy, scipy, pandas, mat-

plotlib, and sklearn. BETS implements the Ordinary Least Squares, Ridge, Lasso,
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and Elastic Net fitting, while provides functionality for new versions to be introduced.

All control, including run settings, data locations, and computational resources, are

set in a Bash settings file. Running it consists of running a sequence of shell com-

mands. Currently, data normalization and randomization (for the two statistical

nulls) must be performed prior to running BETS; we hope to do this automatically

in the future.

BETS is designed to handle large datasets and to take advantage of parallelization

capabilities; our runs heavily used Princeton’s della cluster. In each case of paral-

lelization, individual scripts are created, which can be run independently in parallel.

Computation is parallelized across the number of regressions (in all cases), across

hyperparameters (in the case of cross-validation), and across bootstrap samples (in

the case of bootstrap runs). Individual output files are then integrated in an online

manner, in which files are loaded, integrated, and then deleted to prevent memory

overflows. Because of the size of the coefficient matrices generated from each of the

bootstrap samples, BETS uses large amounts of memory: for 1000 bootstrap samples

in the 100-gene DREAM data, it used about 16 GB. To handle this, once aggregation

is performed, individual bootstrap output files can be deleted. Scripts for doing all

of these are generated automatically; one simply needs to run them in sequence.

Timing statistics are recorded both in real and CPU time, and are summarized

at the end as well.

BETS will be available for download on Github. The results from all analyses are

currently available upon request, and will be posted online in the spirit of scientific

reproducibility.
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4.2 Other Compared Methods

We also ran Jump3 [19] and CSI [37], two methods that outperformed BETS in

AUROC and AUPR. We only discovered the two other top-performing and faster

methods, dynGENIE3 and tl-CLR in a paper published just this year and so were

not able to implement and compare them [12]. For Jump3 and CSI, we used the

same framework of having all control set in a Bash settings file, and automatically

generating scripts to run in parallel and integrate the results. Jump3 was in Matlab.

CSI was in Python3 though the default version was in Matlab; Dr. Penfold graciously

provided the Python3 version and relevant scripts upon request.

Certain parameters required author correspondence to be set because they were

not reported in the papers. Jump3 requires one to set a “systematic noise” term

describing intrinsic noise to the system and an “observational noise” term describ-

ing error from the measurement of gene expression. From correspondence with Dr.

Huynh-Thu, on the DREAM4 data, we set the parameters in accordance with her

previous run: the systematic noise was set at 1e−4 and the observation noise at 0.01

times the value of the gene’s expression.

In the Matlab version of CSI, which I was working with until Dr. Penfold provided

the Python3 version, CSI requires one to set the hyperparameters of the gamma

distributions used as Bayesian priors on the length scale and the process variance

of the Gaussian process (recall that CSI models the nonlinear relationship between

genes as a Gaussian process). Unfortunately, I was unable to find the parameters

used in the run documented until I spoke with Dr. Penfold. The unavailability of

these parameters online posed a risk for reproducibility. They turned out to be the

default values in the Matlab version, a = 10 and b = 0.1, but it was important to

confirm, to ensure that any discrepancies in the re-run would not be confounded by

different parameter settings.

Finally, we ran the three Mutual Information methods ARACNE [30], MRNET
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[33], and CLR [10] directly in R using the minet library [34]. No parallelization was

needed as each methods ran in less than 5 seconds on the DREAM4 100-gene data.

The results from all analyses are available upon request, and will be posted online

in the spirit of scientific reproducibility.
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Chapter 5

Results

5.1 DREAM

5.1.1 Vector Autoregression

Before developing BETS, we had simply implemented the elastic net regression and

significance thresholding of Sections 4.1.1 to 4.1.6 [27]. To assess this performance on

DREAM, we ran the regression under the zero-mean unstandardized and the zero-

mean unit-variance normalizations, with lags 1 and 2, under the elastic net penalty.

We find that the results of each run version are approximately the same, with both

the AUROC and the AUPR all being within standard deviation of each other (Table

5.1.1). The zero-mean-unnormalized and lag 1 had the highest AUROC of 0.674, while

the zero-mean unit-variance and lag 2 had the highest AUPR of 0.12. The results from

each method was poor-performing compared with the rest of the methods assayed in

the literature (ranking at about 7th in AUROC among 16 methods) [38, 19, 58, 12].

Although zero-mean-unnormalized and lag 2 did not have the best performance, we

chose to continue to use it because it was almost equivalent with the others, because

it could capture longer-term and more nonlinear interactions with the lag 2 (as we

found in our Simulation Study in [27]), and because, as discussed in Section 4.1.1, we
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did not want to amplify the representation of low-variance timeseries.
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Run Normalization Lag
AUROC

(average)

AUROC

(stdev)

AUPR

(average)

AUPR

(stdev)

0mean1var-enet-1 0mean1var 1 0.646 0.03 0.118 0.03

0mean1var-enet-2 0mean1var 2 0.652 0.03 0.12 0.02

0mean-enet-1 0mean 1 0.674 0.05 0.112 0.03

0mean-enet-2 0mean 2 0.662 0.05 0.098 0.02

Table 5.1: Results of Elastic Net Regression on DREAM4 100-gene Net-

works. Under the Normalization column, ”0mean1var” denotes normalization to

zero-mean and unit-variance. ”0mean” only denotes normalization to zero-mean.
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To further improve the method, we tested the bootstrap stability selection proce-

dure (Section 4.1.7, inspired by [6]). We used B = 1000 Bootstrapped samples.

We find that for every combination we tested: the elastic net penalty with lags

1 and 2, and the ridge and lasso penalties with lag 2, the Bootstrap version of the

method outperformed the original version (Table 5.1.1). AUROC improved from

0.018 to 0.04 points while AUPR improved from 0.016 to 0.03. In each case the

improvement is on the order of one standard deviation. We compare the results to

the community benchmark methods in Section 5.1.2.
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Run Lag Penalty
Coefficient

AUROC

Bootstrap

AUROC

Coefficient

AUPR

Bootstrap

AUPR

0mean-enet-1 1 Elastic Net 0.674 (0.05) 0.686 (0.05) 0.112 (0.03) 0.14 (0.03)

0mean-enet-2 2 Elastic Net 0.662 (0.05) 0.688 (0.06) 0.098 (0.02) 0.128 (0.02)

0mean-lasso-2 2 Lasso 0.652 (0.05) 0.692 (0.06) 0.14 (0.04) 0.162 (0.05)

0mean-ridge-2 2 Ridge 0.642 (0.04) 0.66 (0.05) 0.08 (0.03) 0.096 (0.03)

Table 5.2: Improvement on DREAM4 100-gene Network Inference from

Bootstrap. For each AUROC or AUPR column, the average is the listed value

and the standard deviation is listed in parentheses. ”Coefficient” denotes the result

when ranking edges by their fitted coefficient, as in the original method. ”Bootstrap”

denotes the results when ranking edges by the frequency by which they appear in the

bootstrap networks.

41



Finally, we tested the sensitivity of our method to the number of bootstrap samples

used. This is important for those with constraints on time and memory. We compared

between 100 and 1000 samples (Table 5.1.1). Our results suggest that 100 would offer

comparable performance to the 1000 case, given similar AUROC values (0.68 and

0.688, less than 2 standard deviations away from each other), and similar AUPR

values (0.124 and 0.128, 2 standard deviations within each other). At the same time,

the 100-sample version uses about 10 times less memory: 1.6 GB vs 15.6 GB. It also

uses about 3 times less time: 1.6 hr vs 4.8 hr. Note that the time does not decrease

by a factor of 10 because in the low bootstrap number regime, the time is dominated

by the search over the hyperparameter space during cross-validation, and we evaluate

25 possible hyperparameter settings for the elastic net.
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Algorithm
Bootstrap

Samples
AUROC AUPR

Time

(hr)

Memory

(GB)

0mean-enet-2-boot-100 100 0.68 (0.05) 0.124 (0.02) 1.6 1.6

0mean-enet-2-boot-1000 1000 0.688 (0.06) 0.128 (0.02) 4.8 15.6

Table 5.3: Comparison of Bootstrap. DREAM results reported for both 100 and

1000 bootstrap samples. All values in the columns are averages and the parenthetical

values as standard deviations across the 5 DREAM4 Networks.
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5.1.2 Community Benchmark

We next performed a literature review, finding 20 other methods that have been

tested on the DREAM data [38, 19, 58, 12]. Of them, we find that 15 have been

tested in AUROC.

BETS performs 3rd out of 17 methods in AUROC (Figure 5.2) and 6th out of 22

methods in AUPR Figure 5.1). BETS is the top performer of all vector autoregres-

sion methods, and Enet (our original method with ranking by coefficient [27]) is a

close second. We also find that our VAR methods, BETS and Enet, have similar per-

formance to the DBN methods in AUPR and outperform most of them in AUROC.

This suggests that VAR is still an effective tool for regulatory network inference, con-

trary to the findings in [38]. Meanwhile, dynamic Bayesian networks and ordinary

differential equations appear less effective.

All methods performed better than random, which performed at 0.5 AUROC and

0.002 AUPR [38]. The top-performing methods in AUPR were based on Gaussian

processes (CSId, GP4GRN), decision trees (dynGENIE3, Jump3), mutual informa-

tion (tl-CLR), and vector autoregression (BETS). Among these, dynGENIE3, tl-CLR,

and BETS are the fastest, taking on the order of minutes to hours whereas the others

take tens of hours (Table 5.1.2) [12].

We also note that CLR and MRNET had strong performance on DREAM4 in [58]

by using an adapted procedure in which a gene’s previous expression was corrected.

However, we were unable to reproduce those favorable results after running their same

adapted procedure, and produced equivalent results.
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Figure 5.1: DREAM4 AUPR Results. Average values across the 5 DREAM

networks are displayed. Bars reach one standard deviation away from the aver-

age.“DBN” denotes dynamic Bayesian network, “VAR” denotes vector autoregres-

sion, and “ODE” denotes ordinary differential equation. Algorithms that were run

in-house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. These

were consistent with reported literature values. Values for CSIc, G1DBN, GCCA,

GP4GRN, TSNI, VBSSMa and VBSSMb were taken from [38]. Values for ebdnet,

LASSO and ScanBMA, were taken from [58]. Values for dynGENIE3, GENIE3,

OKVAR-Boost and tl-CLR were taken from [12]. Value for Inferelator, Jump3 and

were taken from [19].

45



0.5 0.6 0.7 0.8 0.9 1.0

AUROC

CSId
Jump3

BETS
GP4GRN

CLR
G1DBN
MRNET

Enet
ScanBMA
ebdbnet

LASSO
VBSSMa
VBSSMb

CSIc
GCCA
TSNI

ARACNE

DREAM4 AUROC Scores
DBN

Decision Tree

VAR

Gaussian Process

Mutual Information

ODE

Figure 5.2: DREAM4 AUROC Results. Average values across the 5 DREAM

networks are displayed. Bars reach one standard deviation away from the average.

“DBN” denotes dynamic Bayesian network, “VAR” denotes vector autoregression,

and “ODE” denotes ordinary differential equation. Algorithms that were run in-

house were ARACNE, BETS, CLR, CSId, Enet, Jump3 and MRNET. Values for

CSIc, G1DBN, GCCA, GP4GRN, TSNI, VBSSMa and VBSSMb were taken from

[38]. Values for ebdnet, LASSO and ScanBMA, were taken from [58]. Value for

Inferelator and Jump3 were taken from [19].

Finally, we benchmarked the timing results of the methods that we ran in-house:

ARACNE, BETS, CLR, CSId, Enet, Jump3, and MRNET (Table 5.1.2). The most

effective methods, CSI and Jump3, also took at least 9 hours to run on the small

100-gene dataset. Meanwhile, the mutual information methods are extremely fast.

Among these methods, BETS strikes a good middle ground at being effective, at an

AUROC of 0.688, while being reasonably fast, taking 5 hrs in CPU time.
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Method AUPR AUROC Time (s) Time (hr)

CSId 0.208 0.728 33268 9

Jump3 0.182 0.72 162397 45

BETS 0.128 0.688 17383 5

Enet 0.098 0.662 4149 1

CLR 0.072 0.678 0.032 0

MRNET 0.068 0.672 0.038 0

ARACNE 0.046 0.589 0.036 0

Table 5.4: Timing Results of In-House Algorithms. Methods are listed in

decreasing order of their AUPR values. BETS and Enet are bolded to indicate that

they are our own developed methods, based on vector autoregression. CSId is a

Gaussian process method. Jump3 is a decision tree method. CLR, MRNET, and

ARACNE are mutual information methods.
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5.2 Glucocorticoid System

We performed two runs of BETS on the joint-unperturbed data 3.2.1. We will

refer to the lag-1 version as BETS-1 and the lag-2 version as BETS-2.

These runs were performed on the zero-mean centered data, using the edgewise null

(Section 4.1.5) and the local FDR control on each bootstrap networks (Section 4.1.6),

and then controlling the global network FDR based on the bootstrap frequency at an

FDR of 0.2 (Section 4.1.8).

Parallel computation was a key enabler of this study. BETS-1 took 13 days to

complete after parallelizing over 53279 scripts; it took 168 days in CPU time. BETS-

2 took 6 days to complete after parallelizing over 55113 scripts; it took 292 days in

CPU time. Note that the computation time decreased only two orders of magnitude

instead of the four to five we would expect from the number of scripts. The main

bottleneck for parallelization was simply waiting for the jobs to be scheduled. We

attempted to run Jump3 and CSI on our data; Jump3 was not parallelized and so

could not complete, while CSI had not terminated after 7 days when we last checked.

5.2.1 Network Analysis

For BETS-1 and BETS-2, we summarize network statistics (Table 5.2.1), degree dis-

tributions (Figure 5.3) , enrichment (as odd ratios) for certain kinds of annotated

genes and edges (Figures 5.4, 5.5), mutual concordance, and transcription factor re-

lationships to immunity and metabolism.

Network summariesare listed in Table 5.2.1. As expected, there is a 1-2 order

of magnitude lower number of causal genes than effect genes. This concords with

our understanding of gene regulatory networks as initiated by a few genes whose

effects cascade [15, 57]. Moreover, at the same FDR of 0.2, BETS-2 has an order

of magnitude greater size than BETS-2, at 31945 edges compared with 2098 edges.
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This is due to BETS-2 being able to capture lag-2 effects in addition to lag-1effects.
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Network Lag Hyperparameter
Causal

Genes

Effect

Genes
Genes

%

All

Genes

Edges

%

All

Edges

BETS-1 1 (0.1, 0.1) 67 1548 1580 57 2098 0.027

BETS-2 2 (0.01, 0.1) 466 2768 2768 100 31945 0.42

Table 5.5: Results of BETS run on the joint-unperturbed GGR data. Two

runs, at lags 1 and 2, were performed, with the elastic penalty. This used an FDR

threshold of 0.2. ”All Genes” denotes the 2768 genes that were inputted. ”All Edges”

denotes the 7659056 possible causal edges among those genes.
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The BETS-1 causal network contains 2098 edges and is relatively sparse at 0.027%

of possible edges. Only 67 genes are causal for 1548 effect genes, so the vast majority

of genes have 0 Out-degree and only an in-degree of 1− 2 (Figure 5.3). The BETS-1

Network has enrichment for transcription factors among causal genes (odds ratio: 2.8,

Fisher’s exact test p = 0.002) immune genes among causal genes (odds ratio: 4.0,

Fisher’s exact test p = 0.001), and metabolic genes among causal genes (odds ratio:

4.7 , Fisher’s exact test p = 0.0001) (Figure 5.4) It has enrichment for edges with

transcription factors as causes (odds ratio: 2.6, Fisher’s exact test p = 7.1e− 55) and

metabolic genes as causes (odds ratio: 14, Fisher’s exact test p = 1e − 128) (Figure

5.5). Note p = 1e− 128 indicates that the p-value produced by Scipy’s Fisher exact

test, , so we used the smallest positive floating number on our computer.

The BETS-2 causal network contains 31945 edges and is less sparse than the

BETS-1 network, but still sparse at 0.42% of possible edges. 466 genes are causal for

2768 effect genes: all genes have an inward edge. , so the vast majority of genes have

0 Out-degree and only an in-degree of 5− 20 (Figure 5.3). The BETS-2 Network has

enrichment for transcription factors among causal genes (odds ratio: 2, Fisher’s exact

test p = 2.6e− 05) and immune genes among causal genes (odds ratio: 2.9, Fisher’s

exact test p = 1.2e−06) (Figure 5.4). It has enrichment for edges with immune genes

as causes (odds ratio: 2.7, Fisher’s exact test p = 1e − 128) and metabolic genes as

causes (odds ratio: 3.0, Fisher’s exact test p = 1e − 128) (Figure 5.5). Note again

that p = 1e−128 indicates that the p-value returned by Scipy’s Fisher exact test was

0.0, so we used the smallest positive floating number on our computer.
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A) B)

C) D)

Figure 5.3: Out- and In-Degree Distributions of genes in the 2 BETS-

inferred Networks. Out-degree distributions only display up to the 99th percentile

because there are a few very high out-degree genes that would render the graph un-

informative. Notice that there are higher in-degrees and out-degrees in the BETS-2

network, which has almost 15 times the number of edges as the BETS-1 network.
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Figure 5.4: Odds ratio enrichment for Gene Types in the 2 BETS-inferred

Networks. “TF”, “IMM”, “METAB”, “ANY” refer to transcription factor, immune,

metabolic, and any gene, respectively. A baseline odds ratio is 1.0; larger (darker)

indicates enrichment. Note enrichment of TF, immune, and metabolic causal genes

in BETS-1, and enrichment of TF and Immune causal genes in BETS-2.
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Figure 5.5: Odds ratio enrichment for Edge Types in the 2 BETS-inferred

Networks. “TF”, “IMM”, “METAB”, “ANY” refer to transcription factor, immune,

metabolic, and any gene, respectively. A baseline odds ratio is 1.0; larger (darker)

indicates enrichment. Note enrichment of TF and Metabolic-causal genes in BETS-1,

and enrichment of Immune and Metabolic-causal genes in BETS-2.

There is high concordance between the BETS-1 and BETS-2 networks. There are

1286 shared edges between the BETS-1 network (2098 edges total) and the BETS-2

network (31945 edges total). The odds ratio of shared edges is 394, which is statis-

tically significant at p = 1e − 128 for the Fisher’s exact test (Scipy returned 0.0 for

the p-value).

We are especially interested in the Transcription Factors that may be mediating

the Metabolic and Immune effects. We chose to rank transcription factors by the

proportion of their effects that were immune or metabolism related ( Figure 5.6; Tables

A, A).We see that in both the BETS-1 and BETS-2 network, TFCP2L1 and ATF3

have more metabolic effects than immune effects, while TSC22D3 is interemediate

between the two, and NR1D2 has more immune effects than metabolic effects. There
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are some interesting correspondences: in BETS-1, FOS an immune-gene has 0.75 of

its immune-metabolic effects as immune (Table A). In BETS-2, ATF3 is a metabolic

gene and has 0.56 of its immune-metabolic effects as metabolic.

Figure 5.6: Transcription Factors sorted by their immune and metabolic ef-

fects. Transcription factors from each network with effects that were either metabolic

or immune were taken. More red indicates a greater proportion of immune effects

than metabolic effects; more blue indicates the opposite. The size of the dot indicates

the number of the gene’s effects that were either metabolic or immune.

5.2.2 Analysis of Bootstrap Procedure

We investigated the relationship of the coefficients estimated using the bootstrap

coefficients with the original procedure (i.e. fitting simply elastic net). There were

276284 nonzero edges in the unthresholded network from the original fit, and 13095

nonzero edges after FDR-thresholding in the original fit. There were 2371217 nonzero

edges in at least one of the unthresholded bootstrap networks, and 540711 nonzero
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edges after in at least one of the FDR-thresholded bootstrap networks. Merging the

edges that were nonzero in at least one network (either from the original fit or the

bootstrap fit), we end up with 276282 edges, which is about 3.6% of all possible edges

in the network. We next compare their coefficients in the original fit and bootstrap

fits. Throughout this section, “significant edge” will refer to significance in the original

fit, not the bootstrap fit.

We find a high correlation between the original coefficient (from unthresholded fit

on the original dataset) and the mean bootstrap coefficient (coefficient averaged across

all the unthresholded bootstrap fits). In each case, the mean bootstrap coefficient

is a shrunk version of the original coefficient (Figure 5.7). Among the significant

coefficients (Figure 5.7, middle column), the regression gives a fit of y = 0.57x for

Lag 1 (r2 = 0.93) and y = 0.54x for Lag 2 (r2 = 0.92). Among the insignificant

coefficients (Figure 5.7, right column), the regression gives a fit of y = 0.50x for Lag

1 (r2 = 0.82) and y = 0.67x for Lag 2 ( r2 = 0.82).

When we consider the union of the coefficents, in which an edge’s coefficient is

set to be whichever of the lag 1 and lag 2 coefficients has a larger absolute value, we

find slightly decreased correlation (r2 = 0.92 for significant edges and r2 = 0.79 for

insignificant edges). We also find an interesting pattern in which several coefficients

close to 0 have opposite signs between the original coefficient and the mean bootstrap

coefficient– this is a diagonal line in the 2nd and 4th quadrants (Figure 5.7, top row).

These may indicate unstable coefficients in the original fit, as bootstrap resampling

causes the coefficient to flip; indeed, there appear to be more flips among the insignif-

icant coefficients than the significant ones. In particular, they may be unstable due to

the method of unionization: it may be the case that the original maximal coefficient

was a certain lag, but the other lag had a higher (in absolute value) mean coefficient

among the bootstrap coefficients. This would explain why this flip does not appear

for the individual lag networks (Figure 5.7, middle and bottom rows).
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Figure 5.7: Comparison of Mean of Coefficients across Bootstrap Networks

with Coefficient from Original Fit, BETS-2. In each plot, the x-axis lists

the coefficient from the fit on the original complete data, while the y-axis lists the

coefficient averaged over all the bootstrap networks. “Union Coefficient” refers to

the Lag 1 and Lag 2 Coefficients. The red dots indicate significance at FDR 0.05

in the original fit, not in the bootstrap procedure used by BETS-2. Blue indicates

insignificance.
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In summary, there is high concordance between the coefficients inferred in fitting

on the original data and the coefficients averaged from fits across multiple bootstrap

resamples. The bootstrapping has the effect of shrinking the mean coefficient and

generally not flipping the sign of the coefficient.

5.2.3 Validation

Literature-curated Network

We compared the two BETS-1 and BETS-2 networks to the 95-edge literature-curated

network (Section 3.2.3).For both BETS-1 and BETS-2, we find no edges shared with

the literature-curated network.

BETS-1 has only 1 out of its 2098 edges in which both the causal gene is in one of

the literature-curated network’s 29 causal genes, and the effect gene is in one of the

literature-curated networks’ 32 effect genes. This edge is FOS → CXCL8. However,

this is not actually a validated edge in the regulatory network.

BETS-2 has only 5 out of its 31945 edges in which both the causal gene is in

one of the literature-curated network’s 29 causal genes, and the effect gene is in one

of the literature-curated networks’ 32 effect genes. These edges are FOX → AFP ,

FOS → CXCL8, FOS → SGK1, NR4A1→ SGK1, FOS → FGG. Again, none of

these are actually validated edges in the regulatory network.

The low rate of intersection can be explained by the low number of genes present

in the data. Again, upon limiting to the literature-curated network only to those

genes that were present in our data, we reduced it from 95 to 7 edges: JUN →

AFP , NR3C1 → SGK1, NR3C1 → CXCL8, NR3C1 → AFP , NR3C1 → FGG,

NR3C1→ BAX, and NR3C1→ V IPR1. 6 of these 7 involve NR3C1, which, while

it encodes the Glucocorticoid Receptor, is only very lowly differentially expressed at

an FDR of 0.2 (Section 3.2.1). As a nuclear receptor, its mechanism of action is not

by increasing its own expression levels but binding the glucocorticoid drug when it
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enters and then affecting transcription within the nucleus.

Over-expression Data

In this section we attempt. In particular, we rely on the signs (positive or negative)

of our inferred causal relationships. We wish to emphasize that this analysis cannot

directly be performed by those of BETS’ competitors which are based on mutual

information or decision trees, because those methods only output a positive mea-

sure of the causal relation between genes without information about the sign. Thus,

sign information improves our method’s and other vector autoregression methods’

interpretability relative to other frameworks.

First, we inspected the BETS-1 and BETS-2 networks for edges involving the

transcription factors used for the over-expression datasets (Table 5.6). We find in

both networks, TFCP2L1 has the most out-edges (59 in BETS-1, 122 in BETS-2),

and much more than the corresponding in-edges (1 in BETS-1 and 15 in BETS-2).

However, the other 9 transcription factors had much less out-edges: 0 in BETS-1 and

1 to 17 in BETS-2. In fact, 7 of the 9 had more in-edges than out-edges. This is

problematic because Transcription Factors should be regulated other genes and so

have more out-edges, not regulated by other genes and have more in-edges.
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BETS-1 BETS-2
Edges From Edges To Edges From Edges To

CEBPB 0 0 7 10
CEBPD 0 0 7 15
FOSL2 0 0 0 7
FOXO1 0 0 0 9
FOXO3 0 0 0 17
KLF6 0 0 10 13
KLF9 0 0 1 10
KLF15 0 0 0 0
POU5F1 0 0 10 10
TFCP2L1 59 1 122 15
All genes 2098 2098 31551 31551

Table 5.6: Frequencies of Transcription Factor-related Edges for BETS-1
and BETS-2 Networks. Transcription Factors for which we had an over-expressed
dataset are listed. ”Edges from” indicates edges where the gene is the cause; e.g. for
CEBPB all edges of form CEBPB → g. ”Edges to” indicates edges where the gene
is the effect; e.g. for CEBPB, all edges of form g → CEBPB. ”All genes” simply
lists all the edges of the network.
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We inspected those edges inferred with TFCP2L1 as the causal gene. We analyzed

the relationship between the inferred edge and the log-fold change. We fit the log-fold

change as a function of the edge’s sign (as the indicator variables “Is-Positive-Edge”,

“Is-Negative-Edge”, and “Is-Edge”), and vice-versa. Logistic regression was used

when the output variable was the edge sign. We use a significance threshold of 0.1.

In BETS-1, we find only a significant relationship between “Is-Edge” and the

absolute log2-fold change (p = 0.02 for “Is-Edge” as the output in a logistic fit, and

p = 0.03 for “Abs-log2fc” as the output in a linear fit) (Tables 5.8, 5.8). Oddly, the

regression coefficient is the opposite of what we would expect: −1.4 when Is-Edge is

the output and −0.099 when Abs-log2fc is the output. This violates our expectations

that if TFCP2L1→ g, then after we overexpress TFCP2L1, g would have a larger

change from the original dataset than a gene with no edge from TFCP2L1 (Tables

5.10, 5.10).
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Model Fit P-value of m

Log2fc = m Is-Pos-Edge +b Log2fc = -0.066 Is-Pos-Edge 0.13 0.454

Log2fc = m Is-Neg-Edge +b Log2fc = 0.085 Is-Neg-Edge -0.13 0.4

Abs-Log2fc = m Is-Edge +b Abs-log2FC = -0.099* Is-Edge + 0.40 0.026

Table 5.7: Edge to Log-Fold Change Regression Results, BETS-1 For a given

gene g, ”Log2fc” refers to the log2 fold-change of g’s expression in the TFCP2L1

over-expressed dataset relative to the original data. ”Abs-Log2fc” is the absolute

value of ”Log2fc”. ”Is-Pos-Edge” is 1 if there is an edge TFCP2L1 → g in the

BETS-1 inferred network with positive coefficient and 0 otherwise. ”Is-Neg-Edge” is

1 if there is an edge TFCP2L1 → g in the BETS-1 inferred network with negative

coefficient and 0 otherwise. ”Is-Edge” is 1 if there is an edge TFCP2L1 → g in

the BETS-1 inferred network and 0 otherwise. Bold p-values indicate significance at

α = 0.1.
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Model Fit P-value of m

Is-Pos-Edge = logit(m log2fc+b) Is-Pos-Edge = logit( -0.24 * log2fc + -4.5) 0.452

Is-Neg-Edge = logit(m log2fc +b) Is-Neg=Edge = logit(-0.3 * log2fc 4.7) 0.39

Is-Edge ∼logit(m abs-log2fc +b) Edge = logit(-1.4* abs-log2fc - 3.3) 0.02

Table 5.8: Log-Fold Change to Edge Regression Results, BETS-1 For a given

gene g, ”Log2fc” refers to the log2 fold-change of g’s expression in the TFCP2L1

over-expressed dataset relative to the original data. ”Abs-Log2fc” is the absolute

value of ”Log2fc”. ”Is-Pos-Edge” is 1 if there is an edge TFCP2L1 → g in the

BETS-1 inferred network with positive coefficient and 0 otherwise. ”Is-Neg-Edge” is

1 if there is an edge TFCP2L1 → g in the BETS-1 inferred network with negative

coefficient and 0 otherwise. ”Is-Edge” is 1 if there is an edge TFCP2L1 → g in

the BETS-1 inferred network and 0 otherwise. Bold p-values indicate significance at

α = 0.1.
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In BETS-2, we find a significant relationship between “Is-Positive-Edge” and the

log2-fold change (p = 0.00019 when “Is-Pos-Edge” is the output, in a logistic fit, and

p = 0.00021 when log-fold change is the output, in a linear fit). Oddly, the regression

coefficient is the opposite of what we would expect: −0.68 when Is-Pos-Edge is the

output and −0.22 when log2-fold change is the output. We also find a significant

relationship between “Is-Edge” and the absolute log2-fold change (p = 0.096 for

“Is-Edge” as the output, in a logistic fit, and p = 0.096 for “Abs-log2fc” as the

output in a linear fit). Here, the regression cefficients are positive: 0.37 when “Is-

Edge” is the output and 0.052 when Abs-log2fc is the output. This concords with

our expectations that if TFCP2L1 → g, then after we overexpress TFCP2L1, g

would have a larger change from the original dataset than a gene with no edge from

TFCP2L1 (Tables 5.10, 5.10).

In summary, in BETS-2, we find a significant positive relationship between whether

the edge TFCP2L1 → g exists in the network, and the gene g’s log-fold change in

the TFCP2L1 over-expression dataset. This relationship has the right sign because

we would expect a larger change from genes affected by the over-expressed factor. We

also find significant negative relationships between whether there is a positive edge

TFCP2L1 → g in the network, and the gene g’s log-fold change. This relationship

has the opposite sign from what we would expect because we would expect a gene

that is activated by TFCP2L1 to have a more positive, not negative, fold-change

relative to other genes. Finally, in BETS-1, we find an unexpected negative relation-

ship between whether the edge TFCP2L1 → g exists in the network, and the gene

g’s log-fold change. This has the wrong sign because the genes cause by TFCP2L1

appear to change less in the held-out dataset.
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Model Fit P-value of m

Log2fc = m Is-Pos-Edge +b Log2fc = -0.22 Is-Pos-Edge 0.12 0.00021

Log2fc = m Is-Neg-Edge +b Log2fc = 0.099 Is-Neg-Edge -0.13 0.17

Abs-Log2fc = m Is-Edge +b Abs-log2FC = 0.052* Is-Edge + 0.40 0.096

Table 5.9: Edge to Log-Fold Change Regression Results, BETS-2 For a given

gene g, ”Log2fc” refers to the log2 fold-change of g’s expression in the TFCP2L1

over-expressed dataset relative to the original data. ”Abs-Log2fc” is the absolute

value of ”Log2fc”. ”Is-Pos-Edge” is 1 if there is an edge TFCP2L1 → g in the

BETS-2 inferred network with positive coefficient and 0 otherwise. ”Is-Neg-Edge” is

1 if there is an edge TFCP2L1 → g in the BETS-2 inferred network with negative

coefficient and 0 otherwise. ”Is-Edge” is 1 if there is an edge TFCP2L1 → g in

the BETS-2 inferred network and 0 otherwise. Bold p-values indicate significance at

α = 0.1.
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Model Fit P-value of m

Is-Pos-Edge = logit(m log2fc +b) Is-Pos-Edge = logit( -0.68 * log2fc + -3.8) 0.00019

Is-Neg-Edge = logit(m log2fc+b) Is-Neg-Edge = logit(0.42 * log2fc 4.0) 0.17

Is-Edge ∼logit(m abs-log2fc +b) Edge = logit(0.37* abs-log2fc - 3.2) 0.096

Table 5.10: Log-Fold Change to Edge Regression Results, BETS-2 For a given

gene g, ”Log2fc” refers to the log2 fold-change of g’s expression in the TFCP2L1 over-

expressed dataset relative to the original data. ”Abs-Log2fc” is the absolute value

of ”Log2fc”. ”Is-Pos-Edge” is 1 if there is an edge TFCP2L1 → g in the BETS-2

inferred network with positive coefficient and 0 otherwise. ”Is-Neg-Edge” is 1 if there

is an edge TFCP2L1 → g in the BETS-2 inferred network with negative coefficient

and 0 otherwise. ”Is-Edge” is 1 if there is an edge TFCP2L1 → g in the BETS-2

inferred network and 0 otherwise. Bold p-values indicate significance at α = 0.1.
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Chapter 6

Conclusion

This thesis reviews and then develops one effective solution for causal network in-

ference from gene expression time series. We review 20 methods across 6 existing

frameworks. We also both review and perform comparisons of these approaches on

real and simulated datasets. We discuss why causal inference from high-dimensional

time series is especially challenging both statistically and computationally.

We next develop an effective and scalable approach to statistical inference of

causal networks, Bootstrap Elastic net regression from Time Series (BETS). BETS’

key innovations are 1) to use the Elastic Net penalty for regularization, which handles

correlated genes while preserving sparsity, and 2) to use the bootstrap frequency to

rank edges rather than the coefficient. We further use a global null to solve the

problem of declaring statistical significance from bootstrap frequencies. We evaluate

BETS extensively against the DREAM4 100-gene challenge, and implement multiple

approaches from distinct frameworks in-house for the sake of reproducible research.

BETS ranks 3rd in AUROC out of 17 and 6th in AUPR out of 22, is one of the fastest

methods compared to methods of similar performance, and outperforms all other

Vector Autoregression approaches. Additionally, it provides signs to its relationship,

unlike its competitors that are based on Decision Tree and Mutual Information.
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We apply BETS to the GR data and infer two networks using lags of 1 and 2. We

then analyze these networks for enrichment of various gene and edge types, finding

enrichment of edges that involve transcription factors, immune, and metabolic genes

as causes. We find high intersection between our two networks. We find that the

out-degree distributions are heavily right-skewed while in-degree distributions are

much more concentrated at low values, consistent with a smaller set of causal genes

controlling regulation of a larger set of effect genes. We then specifically investigate

the relative association of transcription factors with immunity and metabolism. We

compare the bootstrap procedure with the original procedure and find high correlation

in the coefficient averaged over bootstrap fits and the coefficient from the original fit.

The bootstrap fits have an effect of shrinking the coefficients by a factor of ∼ 0.5.

Finally, we assess the validity of our network on two sources of data: a literature-

curated network and a dataset in which transcription factors were over-expressed.

The literature-curated network had only 7 of 95 edges involving only genes within

our set of 2768 differentially expressed genes for analysis. This is in part because

the network involved mostly transcription factors, which tended not be differentially

expressed. We found no intersections between the BETS-1 and BETS-2 networks

and the literature-curated network. However, we did find associations between our

network edges and log-fold changes in the over-expression datasets. Some associations

had the correct sign, while others had the opposite sign. Such signed analysis is a

unique and interpretable feature of vector autoregression that competitor methods

like mutual information and decision tree cannot perform.

Going forward, we are working on validating our network on trans-expression

Quantitative Trait Loci from the Genotype Tissue Expression Consortium, in the

same manner as in our previous work [27]. We expect that the network to find

enrichment of associations just as in our previous work, due to similarity between

our current procedure and previous procedure (Section 5.2.2). We would also like to
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run the methods dynGENIE3 and tl-CLR which were published only this year and

shown to be two of the fastest and most effective network inference methods (Section

2). We would like to assess concordance between networks inferred by dynGENIE3,

tl-CLR, and BETS. Finally, we would like to model gene trajectories across time

as more flexible Gaussian Processes. Unlike linear Vector Autoregressive processes,

GPs can handle nonuniform spacing of timepoints, variation across replicates, and

nonstationarity. We would develop a framework for causality between these responses,

inspired by work in the medical timeseries domain [48].
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Appendix A

Supplementary Tables
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Transcription

Factor
Annotation IM Effects

Immune Portion

of IM Effects

NR1D2 4 0.75

FOS
Immune, Associated

with GR
5 0.75

NR4A1
Associated

with GR
2 0.5

TSC22D3 2 0.5

ATF3 Metabolism 2 0.5

TFCP2L1
Direct target

of GR
4 0

Table A.1: Transcription Factors and Immune-Metabolic Effects in BETS-1

Network. Annotations are based on Section 3.3.
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Transcription

Factor
Annotation IM Effects

Immune Portion

of IM Effects

HOXB5 2 1

NR1D2 9 0.63

ZNF114 33 0.6

NR4A1
Associated

with GR
25 0.58

SP6 2 0.5

BHLHE40 2 0.5

KLF10 3 0.5

ATOH8 3 0.5

TEF 4 0.5

TSC22D3 7 0.5

ZNF404 7 0.5

HES1 Metabolism 23 0.5

E2F1 2 0.5

SNAI2 10 0.5

FOS
Immune, Associated

with GR
42 0.47

ATF3 Metabolism 18 0.44

FOSL1 5 0.4

ZBED2 13 0.33

ID2 3 0.33

ID4 4 0.25

TFCP2L1
Direct target

of GR
9 0.25

Table A.2: Transcription Factors and Immune-Metabolic Effects in BETS-2

Network. Annotations are based on Section 3.3.73
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