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Abstract

We address two important problems: causal inference of gene regulatory networks and experimental

prioritization of genes for perturbation experiments. Successful solutions to both techniques

can accelerate discovery of the pathways implicated in disease and drug response, and facilitate

improved treatments to suppress adverse effects. Given the transcriptome-wide expression time

series from a set of samples, the problem of causal inference in gene regulatory networks is to

reconstruct a directed graph where nodes are protein-coding genes and edges denote a causal up

or down regulation of expression. This requires solving several statistical problems, including

high dimensionality, statistical significance, and validation. Prioritization of genes for followup

experiments is also challenging without a system for hypothesizing the effect of perturbations

on the global regulatory network. In this work, we develop a causal network inference pipeline

(VAR-GEN) based on Vector Autoregression and apply it to transcriptional time series data in A549

cells exposed to glucocorticoids over a period of 12 hours. We validate the inferred causal network

using genetic variants associated with pairs of connected genes. Finally, we develop a prioritization

method, (CCI), based on Perturbation PageRank to rank genes by their causal influence in the global

network context. We highlight key genes and relationships between genes which may play essential

roles in the immune and metabolic effects of the glucocorticoid.
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2. Introduction

Computational and statistical methods have become increasingly important to the analysis of

biological datasets, in particular those derived from Next-Generation Sequencing (NGS). The rise of

NGS now allows researchers to directly profile the genetics of living systems at high spatiotemporal

resolution [1]. The data is rich enough so that we can gain insight into the causal mechanisms behind

biological phenomena such as disease and drug response. I am specifically working to understand

why glucocorticoids, which are drugs that control overactive immune reactions [2, 3, 4, 5], lead to

metabolic side effects, such as diabetes and obesity [6, 7].

Though NGS data is rich, it also carries new challenges, such as high dimensionality with small

sample size. Analyzing such data depends heavily on the development of effective statistical

models and computational approaches. Furthermore, the insights from these methods should not be

limited to data analysis, but also aid biologists in determining the optimal set of subsequent experi-

ments to perform. The goal of this project is to develop a framework for causal inference and

experimental prioritization of gene regulatory networks, based on the GR dataset, the gene

expression time series from glucocorticoid-stimulated cells. Through this we aim to accelerate

the process of scientific discovery, to enable development of treatments with the same beneficial

effects on immunity as the glucocorticoid, but without the metabolic side effects such as diabetes.

In studying the glucocorticoid genetic response, the primary computational model we shall use is

the Gene Regulatory Network (GRN). A GRN shows the directed network of causal relations where

nodes are protein encoding genes and edges denote a causal up or down regulation of expression.

The main problem is, given the transcriptome-wide time-series expression from a set of samples,

to reconstruct the GRN. The problem of GRN inference has been extensively studied but faces

major statistical challenges. Several effective models exist, including Vector Autoregression [8],

Dynamic Bayesian Network [9], and Mutual Information [10]. In this work we shall focus on Vector

Autoregression, due to its simplicity, speed, and empirical effectiveness in previous studies [8, 11]

and our own simulation study. Though VAR is effective on small simulations, several problems
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must be addressed in order to apply it successfully to our high-dimensional glucocorticoid gene

expression data. One must carefully design the methods for normalization, technical replicates,

regularization, significance testing, false discovery control, and external validation. Though one or

another of these problems have been addressed in previous work [12, 13, 14, 8], to our knowledge

there has not been work that implements a comprehensive pipeline for all of these.

Our first contribution is to build a robust causal network pipeline, VAR-GEN, that ad-

dresses each step of the modelling process and rigorously validates on external data (Sections

5.1, 6.5.2). VAR-GEN performs high-dimensional Vector Autoregression with hyperparameter tun-

ing. It addresses the problem of statistical significance by including multiple options for generating a

permutation null and controlling the False Discovery Rate. We then validate our networks externally

using gene association tests from the Genotype Tissue-Expression Consortium, demonstrating

enrichment of dependent relations within our causal networks.

In addition, previous computational approaches over gene regulatory networks have focused

on modelling and analysis of the underlying biology. However, biologists would also benefit

greatly from experimental prioritization methods. In our particular project, we wish to use our

inferred causal network to prioritize follow-up perturbation experiments with the ultimate goal of

suppressing the metabolic response while maintaining the immune response. A naive approach is to

simply list those genes with the most metabolically-related genes. However, this is insufficient in

the case of a more complex network. An influential gene may regulate several genes that are not

metabolically-related themselves, but each of which regulates metabolic genes. One must therefore

consider the network context in measuring a gene’s influence.

Our second contribution is thus to develop a contextual causal influence score (CCI) that

considers network context to prioritize experiment interventions. (Section 5.2) This score is

inspired by the PageRank algorithm [15], which provides a means to quantify the centrality of

genes in the context of the global network topology. We leverage a variant known as Perturbation

PageRank [15] to ranks network genes in terms of their strong causal influence on metabolic targets

and weak causal influence on immune targets. We thus provide a method to identify candidate genes
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whose suppression will limit the adverse metabolic effects of glucocorticoids, while preserving the

therapeutic immune effects. To our knowledge, such PageRank methods have not been previously

applied to GRN networks.

Together, the causal pipeline VAR-GEN and the experimental prioritization method CCI form a

coherent framework to analyze gene expression time series data and prioritize followup experiments.

(Figure 1).

Causal	
Inference	

Experimental	
Priori5za5on	

Follow-up	
Experiments	

Influen5al	
Genes	

Gene	Regulatory	
Network	

Sequencing	
Data	 1	

2	

3	

Figure 1: Computational Framework for Gene Regulatory Network Analysis and Exper-
imentation. 1) A Gene Regulatory Network is generated from sequencing data using a
causal inference model, VAR-GEN. 2) Genes are prioritized for experimental perturba-
tion based on the desired biological response. In our case, the desired response is
a limitation of metabolic effects while preserving immune effects. This uses the con-
textual causal influence score CCI. 3) Those genes’ interactions are probed further in
follow-up experiments. Data from those experiments can then be used to infer further
more Gene Regulatory Networks.

First, in Section 3, we review related approaches to causal inference and experimental prioritiza-

tion. In Section 4, we describe the GR gene expression dataset and our preprocessing procedures.

In Section 5, we discuss the methods: the details of VAR-GEN and CCI, as well as the validation

procedure and annotation methods. In Sections 6.1 - 6.4, we perform a preliminary analysis of
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the causal inference model, testing it on both a simulated gene dynamical system and on the real

GR data, with multiple parameter settings, in order to choose appropriate settings for our main

network. In Section 6.5, we perform the analysis of our main inferred GR network, with a focus on

biologically relevant findings. We discuss the Validation (Subsection 6.5.2) and the Experimental

Prioritization results (Subsection 6.5.3). We conclude in Section 7.

3. Problem Background and Related Work

3.1. Causal Inference Methods in Gene Regulatory Networks

A variety of approaches for causal inference in gene regulatory networks have been studied over the

past decade. We review the approaches and discuss several comparison studies. A more detailed

treatment can be found in [10, 16].

• Vector Autoregression: Model a gene’s expression as a linear function of its and other genes’

previous values

• Differential Equations: Like Vector Autoregression, except model the rate of change in a

gene’s expression instead of the absolute gene expression.

• Dynamic Bayesian Networks: Model the joint probability distribution of the gene expression

values as the decomposition of conditional probability distributions.

• Mutual Information: Model the mutual information between a gene’s expression values and

other genes’ previous values

• Boolean Networks: Model genes’ binary values as a logical function of previous genes’ binary

values.

• Non-parametric Dynamical Systems: Model gene’s expression as an unknown function of

previous expression using a Gaussian Process prior

Vector Autoregressions (VAR) model the expression of a gene Y at time t as:

Yt =
K

∑
i=1

αiYt−i +
K

∑
i=1

βiXt−i + εt
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where εt
iid∼ N(µ,σ2) and i denotes the lag of the causal effect, with K as the maximum lag.

This is based on the principle of Granger Causality [17], in which X → Y if including information

from X improves our prediction of Y . The causal edge X → Y is inferred when βi is found to be

significantly different from 0. We review previous VAR methods in Subsection 3.3, and compare

with our method, VAR-GEN.

Differential Equations fit the change in the expression of a gene Y at time t [18, 19, 20].

dYt

dt
= β0 +

n

∑
i=1

αiYt−i +
n

∑
i=1

βiXt−i

Since the derivative dYt
dt cannot be computed in real data with substantially spaced timepoints, it

is often approximated by Yt−Yt−1
∆t . This results in the model:

Yt−Yt−1

∆t
= β0 +

n

∑
i=1

αiYt−i +
n

∑
i=1

βiXt−i

If we assume a fixed ∆t and simply multiply it on both sides, then move the Yt−1 term to the

right-hand side one can show that the differential equation model is actually equivalent to the Vector

Autoregression model. The methods are closely related.

Dynamic Bayesian Networks (DBNs) model the global joint distribution as a breakdown of

conditional probability distributions [21, 22, 9].

P(X1
1 , . . . ,X

n
1 ,X

1
2 , . . . , . . .X

n
t ) = P(X1)

T

∏
t=2

n

∏
i=1

P(X i
t |pa(X i

t ))

Here, X i
t is the expression of gene i at time t.

Two form are typically used. The first is the quantized DBN. Gene expression values are quantized

into 3 values: −1,0,1 representing under-expression, baseline, and over-expression respectively.

The conditional distribution is then discrete, constructed from the contingency table [9]. The second

is the Gaussian DBN. Gene expression values are modelled as conditionally Gaussian given previous

values [9]. In the Gaussian case, the model is quite similar to the Vector Autoregressive model,

which also assumes conditional Gaussianity of effects Yt given the causes Xt−1. An advantage of the
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DBN is that they are commonly used to integrate external information, such as epigenetic data [23]

or functional association networks [24]. One should note that because whole graphs are modelled

jointly and the graph structure search space grows at least exponentially in the number of nodes,

inference of DBNs is often highly computationally intensive [9].

DBNs have been used to model cell signaling networks from single-cell phosphoprotein data [25].

Several approaches have been developed to model gene regulatory networks from gene expression

time series [22, 26, 21].

Mutual Information (MI) methods compute the mutual information between gene expression

values. They can be extended to detect causal relations by taking the lagged values of the causal

gene X [27].

Ik(X ,Y ) =−
T

∑
t=k

P(Xt−k,Yt) log
P(Xt−k,Yt)

P(Xt−k)P(Yt)

Boolean Network (BN) methods model each gene as a boolean function of the values of previous

genes. Here, each gene’s expression has been discretized.

Yt = f (X1
t−1, . . . ,X

n
t−1

The advantage of these methods is that they can be simple and provide an understanding of the

network as a logical circuit. The main drawback is the discretization of gene expression, which

may not be biologically realistic [16]. Furthermore, Boolean networks are challenging to compute,

because of the large search space of network structure and logical functions [16].

Non-parametric Dynamical Systems (NDS) methods model each gene as a nonlinear function

f of the values of previous genes, using a Gaussian process prior [28].

X(t +1) = f (X1(t), . . . ,XN(t))

where
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p(X i
t |Xpa(x))∼N (X i

t |µ(Xpa(x)),K(Xpa(x)))

These provide an effective and flexible model for the gene dynamics [28]. Networks are then

inferred by integrating over the distribution of parental sets, finding the model that maximizes the

likelihood. The drawback is that Gaussian Process computation time grows exponentially in the

number of possible causal genes, and requires constraints to be tractable [28].

3.2. Comparison of Causal Inference Methods

Several studies have evaluated the effectiveness of these causal inference methods in simulated and

real gene expression data. We focus on those involving the Vector Autoregression. The main finding

is that VAR performs effectively on data of similar time interval and high dimensionality to the

GR data, which has 1-hour interval and thousands of genes (Section 4) [11, 8]. However, in other

studies VAR was inferior to the Dynamic Bayesian Network (DBN) and Nonparametric Dynamical

Systems (NDS) for small and shorter time series [21, 28].

Lopes [11] assess Vector Autoregressions (VAR), Dynamic Bayesian Networks (DBN), and

Mutual Information methods (MI) on three microarray datasets: a 22-hour fly dataset with hour-long

time intervals (primarily), a 5-hour E. Coli dataset with 10-50 minute time intervals, and a 2-hour

Yeast dataset with 5 minute time intervals. The method accuracy was evaluated by comparison with

known interactions in a database. The authors found that the lag-1 Vector Autoregressive models,

"VAR(1) + lars" and "simone", performed the best on the Fly dataset with AUPRC of over 0.39.

This suggests that VAR methods are effective for data of the hour-long time intervals, which is the

case for our GR data.

Yao [8] also compare Vector Autoregressions (VAR), Dynamic Bayesian Networks (DBN) and

Mutual Information methods (MI) on a simulated hierarchical gene network, where the number of

genes, 1000, exceeded the number of timepoints, 20. They find that top two methods are their own

developed prior-knowledge VAR and the lasso-penalized VAR. They also found that the DBN was

unable to handle data of that scale, and that the MI methods did not perform as well as VAR. Yao’s
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simulation work supports our use of VAR in the GR data: first, the simulated data is similar to our

setting, with the same high-dimensionality and short time series, and second, it is computationally

tractable.

Two studies [9, 28] found that VAR did not perform as well as other approaches. Zou specifically

compare DBN and VAR, finding that DBN outperforms VAR on a short timeseries of 5 genes and

has higher accuracy on a true clock network. Meanwhile, Penfold [28] compare Vector Autore-

gressions (VAR), Ordinary Differential Equations (ODE), Dynamic Bayesian Networks (DBN),

and Nonparametric Dynamical Systems (NDS). On the simulated DREAM4 100-gene network

with 21 timepoints, they found that NDS outperformed DBN, which outperformed VAR/ODE. For

the in-vivo networks (a 5-gene yeast network and 7-gene clock network), Penfold again find that

NDS outperformed DBN, which outperformed VAR/ODE; all performed better than random. These

findings suggest that for small-sized networks, NDS or DBN are more effective than VAR. The

main drawback is that they can be quite computationally challenging and require sophisticated

implementation.

3.3. Comparison of Vector Autoregression Methods

In this section, we compare VAR-GEN to previous approaches that use vector autoregressions to

infer causal networks from gene expression time series. We chose vector autoregression due to

its simplicity, flexibility, interpretability, and proven efficacy on simulated [8] and real data [11].

Our primary finding is that VAR-GEN is the only one of the VAR methods to simultaneously

consider high-dimensional gene expression time series, tune hyperparameters, incorporate technical

replicates, use a statistical null, and control false discovries.

Mukhophadyay first applied VAR to the HeLa Cell Cycle gene expression data to find genetic

modules and pathways [29]. Tam also applied VAR to the HeLa dataset. They show that it is

important to consider as many predictor genes as possible during the model fit, in order to prevent

confounding causal fit [30]. They perform a two-step fit: first pairwise to choose the predictors,

then a full predictor fit. However, both Mukhophadyay and Tam rely on the F-test for assessing
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significance. This test is undefined for our cases in which the dimensionality (2768 genes) exceeds

the sample size (44 samples, one for each timepoint-replicate relation ).

To handle the dimensionality problem, Lozano [12] and Shojaie [13] introduce the lasso penalty

to regularize the VAR fit. Both papers emphasize methods for adapting the lasso penalty so that it

chooses the optimal lag. The lag is the total number of previous timepoints considered in performing

the fit. For example, in a lag of 3, fitting Xt will use timepoints t−1, t−2, t−3. However, lasso alone

may not perform favorably on our data. Our data is likely to contain many correlated predictors,

as the gene temporal profiles may often exhibit similar trends, such as net increase followed by

decrease. Because Lasso will select only one of the several correlated predictors [31], it may find

an overly sparse network. Thus, we wished to test the ridge and elastic net penalties as well, which

were not addressed. Furthermore, neither method mentioned the problem of false discovery control

for the network.

Opgen-Rhein introduce a James-Stein shrinkage estimator for the regularized VAR coefficients

[32]. Their work further accounts for hyperparameter tuning, significance and false discovery

control. We plan to implement their method as part of a follow-up study and compare the results of

their method with our own formulation of hyperparameter tuning, significance, and false discovery

control. Furthermore, we incorporate technical replicates unlike those authors.

The most recent and related work to our method is from Yao, called CGC2SPR. They implements

the ridge, lasso, and elastic net penalties to handle the high dimensionality [8]. The method offers

two main contributions: a Bayesian approach to the ridge penalty which uses external transcription

factor binding information, and a local null method to assess significance. However, the method’s

statistical null, which is based on uniform random vectors instead of permuted values of the data,

has a very different distribution from the original expression, and so may result in excessively liberal

null rejections.
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3.4. Experimental Prioritization Methods

A number of approaches tackle the latter problem of ranking specific genes in a directed network

for future experimental interventions, including Bayesian [33, 34, 35, 36] and classical techniques

[37, 38]. These experimental design methods allow the estimation of directed acyclic graphs (DAGs)

using interventions, but do not include time series observations. Moreover, the acyclic restriction of

DAGs is a limitation in modelling signaling pathways [39]. While an acyclic graph is interpretable,

relaxing the acyclic requirement enables our approach to encode realistic but complex biological

phenomena such as regulatory feedback loops [40, 41, 42].

4. GR gene expression data.

The glucocorticoid receptor (GR) regulates the transcription of a variety genes controlling the

metabolism and immune response [3]. It is activated via binding to glucocorticoids; the bound

complex then enters the nucleus and activates or represses the transcription of a variety of genes, both

on its own and as bound to other proteins [2, 3, 7, 4, 6, 5]. The GR dataset seeks the comprehensive

characterization of the genomic response to glucocorticoids through the measurement of changes in

chromatin accessibility, epigenetic state, transcription factor binding, chromatin looping, and gene

expression at time points across 12 hours of glucocorticoid treatment [5]. We extracted the temporal

profiles of the genes from the GR expression data set across the 12 time points: {0,0.5,1−8,10,12}

hrs from the initial treatment.

We select the temporal profiles of those genes whose average expression across time were higher

than 2 TPM and that passed the edgeR [43] criteria for differential expression. To measure average

expression, we first averaged the gene’s expression value per timepoint, and then took the average

of those timepoint averages. For differential expression, we used the same method as in [5]: for

each timepoint, we tested each gene’s expression against its basal expression at an FDR threshold

of 0.05, such that the resulting selected genes had expression different from the basal expression for

at least one time point. These steps lead to a processed data set of 2767 differentially expressed

genes. Finally, we added NR3C1, which encodes the GR transcription factor, even though it was not
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found to be differentially expressed at the FDR threshold of 0.05. In the end, we had a set of 2768

genes, which included 226 transcription factors. The resulting temporal profiles were further log

transformed (base 2) and corrected for surrogate variables using SVAseq[44].

There were 4 replicates of the GR gene expression dataset across time. We split the data by

replicates. All replicates besides replicate 1 had a measurement for each timepoint. Replicate 1

was missing timepoints 5 and 6 hrs, so we performed a linear imputation for these values in the

log-transformed, surrogate corrected space.

We considered two normalization schemes for the temporal profiles: zero-mean unstandardized

and zero-mean unit-variance. Zero-mean unstandardized centered each gene temporal profile to

have zero-mean across time. Zero-mean unit variance centered each gene temporal profile to have

zero-mean, and then standardized it to have unit variance. By gene temporal profile, we mean the

gene’s expression values across time for a single replicate.

5. Methods

5.1. Causal Inference Framework: VAR-GEN

VAR-GEN is a vector-autoregressive approach to causal inference from gene expression time series

data. It is based on the principle of Granger Causality [17], in which a gene #»g is said to be causal

for another gene g if using information from gene #»g significantly improves our ability to predict

gene g.

VAR-GEN handles the high dimensionality of gene expression time series data via regularization,

for example with the elastic net penalty. Hyperparameters are chosen via cross-validation. Signifi-

cant causal edges are inferred based off of a permutation null, while controlling for false discoveries.

We now discuss the details of this method.

5.1.1. Vector Autoregressive Model

We used a vector autoregressive model (VAR) with lag L ∈ {1,2} to fit temporal gene expression

profiles across multiple replicates of G genes over t ∈ {1,2, . . .T} time points. Let g ∈ {1,2, . . .G}

index the set of genes and let g− represent the set of all genes excluding gene g, namely {1,2, . . .g−
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1,g+1, . . .G}. Let Xg
t = {Xg

t,1,X
g
t,2,X

g
t,3,X

g
t,4}T be the 4×1 vector of gene expression levels of gene

g across R = 4 replicates at time t. We modeled each gene g as

Xg
t =

L

∑
l=1

mg
l Xg

t−l +
L

∑
l=1

∑
g′∈g−

β
g′,g
l Xg′

t−l + εt (1)

where εt ∼ N (0,1). In other words, the expression of each gene g is modelled as a linear

function of its and other genes’ L previous expression values, under independent Gaussian noise. In

Equation 1, mg
l represents the (scalar) effect size of gene g’s l-th previous value, Xg

t−l , on its current

value, Xg
t . β

g′,g
l represents the (scalar) effect size of the l-th previous value of gene g′ 6= g, Xg′

t−l on

gene g’s current value, Xg
t . µ is the the intercept term. One should note Equation 1 requires that

t > l for the l-th previous value, Xg
t−l , to exist.

One should note that the VAR assumes equally spaced timepoints. The time interval for the

GR data ranges from 0.5 up to 2, and is therefore technically in violation of this requirement. A

counterpoint to this is that the short intervals are concentrated at the beginning (hours 0,0.5,1)

where there is more likely to be activity, and the long intervals are at the end (hours 8,10,12), where

there is likely decreased activity. Thus despite the theoretical violation, treating the timepoints as

equally spaced may not be entirely problematic [11].

To demonstrate how our model is fit in practice, we reformulate Equation 1 using matrix notation.

Here, each row represents one timepoint per replicate. There are T −L timepoints with t > L and R

replicates, so there are R(T −L) samples, or rows, in total. Let N = R(T −L).
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Let

Xg
t =



Xg
L,1
...

Xg
L,R

Xg
L+1,1

...

Xg
L+1,R

...

...

Xg
T,R



(2)

Xg
t is a N×1 vector. We can similarly write Xg

t−l which is the same vector, but which replacing

each entry with its l-th previous value. Now combine the L lagged vectors of gene g, [Xg
t−1, . . . ,X

g
t−L]

into Xg
t−l , a N×L matrix of the L lagged values of gene g. Finally, let mg

l be a L×1 vector of the L

lagged coefficients.

Xg
t−l = [Xg

t−1 . . .X
g
t−L]

ml =


mg

1
...

mg
L


(3)

Next, let us formulate the component of Equation 1 involving the other genes g′ in matrix notation.

Let Xg−
t−l be a N×L(G−1) predictor matrix of the genes g′ 6= g. Each column is of form Xg′

t−l . Note

the number of columns is L(G−1), because there are G−1 genes g′ and for each gene g′, there are

L lagged values: Xg′
t−1, . . .X

g′
t−L.

Xg−
t−l =

[
X1

t−1 . . . X1
t−L X2

t−1 . . . . . . XG
t−L

]
(4)
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Let β l be a L(G−1)×1 vector of the causal coefficients β
g′,g
l where g′ 6= g:

β l =



β
1,g
1
...

β
1,g
L

β
2,g
1
...
...

β
G,g
L



(5)

We then seek to fit the model:

Xg
t = Xg

t−lml +Xg−
t−lβ l + ε t (6)

where ε t is a N×1 vector with each element εt,r ∼ N(0,1)

To write in the most compact form, we can write

Xg
t−l = [Xg

t−lX
g−
t−l], β̄ =

ml

β l


. Note that Xg

t−l is a N×LG matrix and β̄ is a LG×1 vector.

Thus in final form we would fit:

Xg
t = Xg

t−lβ̄ + ε t (7)

With these equations prepared, we are ready to describe the penalized fitting procedure.

5.1.2. Penalized Regression
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The ordinary least squares estimator fits the causal coefficients as:

β̂ = argmin
β̄∈RLG

‖Xg
t −Xg

t−lβ̄‖
2
2 (8)

Here ‖·‖2 represents the l2-norm of a vector, i.e. the square root of the sum of the vector’s

squared coordinates.

However, we are in the high-dimensional setting: the dimension, LG exceeds the sample size

N = R(T −L). For example, if L = 1, the dimension LG = 2768 whereas our sample size N =

R(T −L) = 44. As a result, the ordinary least squares estimator is undefined. We must instead

resort to the use of penalized approaches such as LASSO (Least Absolute Shrinkage and Selection

Operator) [45], elastic net [31], and ridge regression [46]. These are designed for β̂ to be sparse

(only a few nonzero coefficients) and shrunk (reduced in magnitude).

We discuss the elastic net penalty, which is a more general case of the ridge and lasso penalties.

The elastic net fits the following objective:

β̂ = argmin
β̄∈RLG

‖Xg
t −Xg

t−lβ̄‖
2
2 +λ (α‖β̄‖1 +(1−α)‖β̄‖2

2) (9)

Here ‖·‖1 represents the l1-norm and ‖·‖2 represents the l2-norm.

By setting α = 1 in the above equation 9, we obtain the Lasso objective function. By setting

α = 0 in the above, we obtain the Ridge objective function.

For the Elastic Net, we used the following ranges of hyperparameter values:

λ ∈ {10−4,10−4, . . . ,1}, α ∈ {0.1,0.3, . . . ,0.9}. For Lasso, we used λ ∈ {10−5, . . . ,1}. For

Ridge, when we used {10−5, . . . ,1}, we found that the the optimal value selected in some cases was

the max 1. We thus expanded the range to {10−5, . . . ,106} to ensure that we were not missing more

optimal hyperparameters at larger values. At this point, the optimal λ was found to be 100 (Table

4).

Our choice of the hyperparameters λ and α greatly affects the amount of penalization we apply
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to our coefficients, and thus the quality of our fit. In the next section, we discuss our method of

hyperparameter tuning, via cross-validation.

5.1.3. Hyperparameter Tuning

Hyperparameters were selected using leave-one-out cross-validation (LOOCV). The hyperpa-

rameter (or pair of hyperparameters, for elastic net) that minimizes the mean-squared error on the

held-out datapoints is selected.

More specifically, we first fix a hyperparameter (λ ,α). Then, for a given gene g and row index i,

extract the i-the row of Xg
t and Xg

t−l . Refer to this extracted validation set as
(
Xg

t
)

i and (Xg
t−l)i. The

remaining data is the training set,
(
Xg

t
)
−i, (X

g
t−l)−i.

First we fit our coefficient β̂
g,i
λ ,α over the training set.

β̂
g,i
λ ,α = argmin

β̄∈RLG
‖(Xg

t )−i− (Xg
t−l)−iβ̄‖2

2 +λ (α‖β̄‖1 +(1−α)‖β̄‖2
2) (10)

We then compute the fit’s prediction error on the validation set, ‖
(
Xg

t
)

i− (Xg
t−l)iβ̂

g,i
λ ,α‖2

2.

We repeat the fit β̂
g,i
λ ,α and error for every row index i of Xg

t and for every gene g.

The mean held-out cross-validation error for (λ ,α) is:

MSE(λ ,α) =
G

∑
g=1

R(T−L)

∑
i=1

1
GR(T −L)

‖
(
Xg

t
)

i− (Xg
t−l)iβ̂

g,i
λ ,α‖2

2 (11)

The (λ ,α) which minimizes the error in Equation 11 is selected.

5.1.4. Statistical Null

Borrowing from the language of econometrics, a gene g is Granger-caused by a gene g′ ∈ g−

if using the past values of g′ can improve our prediction of gene g, given the information from

all remaining genes. In the language of vector autoregression, this means that for at least one lag

l, β
g′,g
l is significantly different from 0 [17]. The null hypothesis, where the β

g′,g
l is equal to 0 is

evaluated using a permutation test.

We explored two possible choices of nulls: the "global" and "local" null. The global null permutes

every possible causal gene, i.e. all of g−, while the local null only permutes the particular causal
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gene g′. In both cases, the model is fit again over the permuted dataset to generate a null distribution

of coefficients, under the case where the causal time structure ought to be removed.

In particular, we first generated a single permuted dataset X̃G
t . For each gene, we independently

shuffled the expression values of each gene g ∈ {1, . . . ,G} across time. This is done separately for

distinct replicates.

For the global null, we wish to model the hypothesis of no causal relations, from any gene

g′ ∈ g−, upon a given effect gene g. Thus, we uses the unpermuted values of the effect gene Xg
t and

the permuted values of all other causal genes g′ ∈ g−, as X̃t
g−

. Permuting the effect gene Xg
t would

allow us to test the significance of the gene’s self-interaction, but we are only interested in testing

significance of the causal relations of other genes on the given gene. Thus we do not permute the

effect gene g.

Null causal coefficients β̃ g− are then fit as

Xg
t ∼N

(
L

∑
l=1

mg
l Xg

t−l +
L

∑
l=1

∑
g′∈g−

β
g′,g
l X̃g′

t−l,1

)
(12)

For the local null, we wish to model the case of no causal relation from gene #»g upon gene g.

Thus, we only use the permuted values of the causal gene #»g , X̃t
#»g

, and use the unpermuted values

of the effect gene g (Xg
t ) and of all remaining genes Xg

t .

The null causal coefficient β̃
#»g is then taken from its fit in:

Xg
t ∼N

(
L

∑
l=1

mg
l Xg

t−l +
L

∑
l=1

∑
g′ 6=g, #»g

β
g′,g
l Xg′

t−l +
L

∑
l=1

β
#»g ,g

l X̃
#»g

t−l,1

)
(13)

In our final analyses, we chose to use the global null. We compare the empirical performance of

the global and local null (6.4.1). We find that the local null is difficult to reject because the permuted

values often result in higher causal coefficients (Figure 3). For further discussion see 6.4.1.

5.1.5. False Discovery Rate Control

Similar to the null model, there we consider two alternatives for controlling the False Discovery

Rate: a global approach and a local one. For a fixed lag, the global FDR controls the rate of
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insignificant causal relations across the whole inferred causal network, while the local FDR controls

for the causal relations conditioning on the specific effect gene. The local FDR may be more

appropriate when there is a stringent threshold for one effect gene; i.e. the null coefficients for the

effect gene. Under the global FDR, this would lead to a stringent threshold for all effect genes,

while in the local FDR, it would only lead to a stringent threshold for that specific coefficient.

Let β
.,g
l refer to the set of all lag-l causal coefficients for the effect gene g. Let β

.,.
l refer to the set

of all lag-l causal coefficients. Define β̃
.,g
l and β̃

.,.
l analogously for the null coefficients.

We control the global FDR by fixing a lag l ∈ {1, . . . ,L} and finding the threshold Tl such that

|{|β̃ .,.
l ‖> Tl}|

|{|β̃ .,.
l |> Tl}|+ |{|β .,.

l |> Tl}|
< 0.05 (14)

For each gene pair ( #»g ,g), #»g ∈ g−, a causal link #»g → g exists if for at least one of the lags

l ∈ {1, . . . ,L}, |β
#»g ,g

l |> Tl .

We control the local FDR by fixing a lag l ∈ {1, . . . ,L} and an effect gene g and finding the

threshold T g
l such that

|{|β̃ .,g
l > T g

l }|
|{|β̃ .,g

l |> T g
l }|+ |{|β

.,g
l |> T g

l }|
< 0.05 (15)

For each gene pair ( #»g ,g), #»g ∈ g−, a causal link #»g → g exists if for at least one of the lags

l ∈ {1, . . . ,L}, |β
#»g ,g

l |> T g
l . The only difference from the global FDR is that there is a threshold T g

l

specific to the effect gene g.

VAR-GEN is based on a local FDR calibration. We compared the empirical performance of

the global and local FDR calibration (6.4.1). The local FDR calibration resulted in inferred

networks with sizes of similar orders of magnitude across different settings. Meanwhile, the global

FDR resulted in several overly sparse networks. As before, this was likely due to the following

phenomenon: a high null coefficient for one effect gene g would result in a stringent threshold

across all effect genes, not merely g.
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5.2. Contextual Causal Influence Score

Though the writing in this section is my own, CCI was primarily conceived and implemented by

Bianca Dumitrascu. I discuss it here for completeness. - Jonathan Lu

A primary goal of the GR study is to enable development of treatments with the same beneficial

effects on immunity as the glucocorticoid, but without the metabolic side effects leading to diabetes

or obesity [5, 2, 6, 4]. Disentangling these effects requires experimental perturbations upon the

original GR network, for example suppression of a gene’s expression via knockout. However,

it is crucial to prioritize which of the thousands of genes is to be perturbed, given the limited

experimental budget. One attempt is to simply select those genes whose immediate neighbors are

highly metabolic. However, this is insufficient as an influential gene may regulate several genes that

are not themselves metabolic, but each of which regulates metabolic genes. It is therefore necessary

to consider the network context in measuring a gene’s influence. Toward this end, we introduce a

contextual causal influence score based off of PageRank [15]. The PageRank score quantifies node

centrality (connectedness) in the context of overall network topology. They are most commonly

known through their use in the Google search engines for ranking webpages. To our knowledge,

such methods have not previously been used for GRNs.

We define a gene to have a high contextual causal influence score if its removal from the network

minimizes the metabolic genes’ network centrality, while also minimizing the change in the immune

genes’ network centrality. These intermediaries can be interpreted as belonging to a "cut set" that

separates immune genes from metabolic genes, and are interesting candidates for experimental

followup.

In particular, we considered the network G obtained through the VAR-GEN approach, and the set

M of nodes corresponding to genes annotated as metabolic, and I the set corresponding to genes

annotated as immune. Absolute values of the network edges’ coefficients are normalized to create a

Markov adjacency matrix of the network G (for each node, the weights of its out-going edges sum to

1). We then compute the Pagerank pg(X), which is X’s PageRank in network G . Next, we perform

the "perturbation": for any gene A, we considered the graph obtained by removing all the edges
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containing the node corresponding to A and re-normalizing the remaining weights appropriately

(G A−). We then re-compute the PageRank pg(XA−) over the perturbed network. A damping factor

of 0.85 is used to compute the PageRank scores [15]. Finally, we define the contextual causal

influence score of gene A as

CCI(A) =− ∑
X∈I
‖pg(X)− pg(X−A)‖− ∑

X∈M
‖pg(X−A)‖. (16)

The term ∑X∈I ‖pg(X)− pg(X−A)‖ represents the total absolute change in the PageRank of

immune genes from perturbing A. The term ∑X∈M ‖pg(X−A)‖ represents the PageRank of the

metabolic genes after perturbing A. Thus, a gene A with a high CCI would, when perturbed,

minimize both the change in the immune genes’ network centrality, and the metabolic genes’

absolute network centrality. This seeks to capture the biological goal of minimizing the change in

immune effect, while also minimizing the metabolic genes.

5.3. Gene Annotations

In the Results Section 6, we perform a variety of analyses based on gene annotations. This section

describes those annotations.

We used four main classifications in our analysis of genes: Immune, Metabolic, Transcription Fac-

tor, and Direct Target of Glucocorticoid Receptor (GR-Direct). We now describe the classification

method.

Immune genes were called using two primary sources. The first is the Gene Ontology annotation

"Immune" ( GO:0002376) [47]. To emphasize experimentally verified annotations, we only used the

evidence codes EXP, IDA, IGI, IMP, IPI, IC, TAS. The second is the Gene Ontology Consortium’s

curated, ranked list of immune-related genes based off of multiple databases and experimental

evidence [48]. For the GO annotation, We selected all those genes with score greater than or equal

to 7. This resulted in 616 immune genes overall, and 109 immune genes in our list of 2768 genes

(differentially expressed + GR).

Metabolic genes were called using two primary sources. The first is the Gene Ontology annotation
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"carbohydrate metabolic process" GO:0005975 [47]. We only used the evidence codes EXP,

IDA, IGI, IMP, IPI, IC, TAS. The second is the Gene Set Enrichment Analysis’ curated list

of metabolic-related genes [49]. We searched only among those with experimental evidence:

the Canonical, KEGG, BIOCARTA, and Reactome pathways. We used the following 4 search

queries: "gluconeogenesis OR (glucose AND metabolism) OR glycolysis", "lipid AND metabolism",

"Diabetes", "Obesity". We chose these queries to ensure we covered genes implicated in both

metabolic processes and disorders, which may be affected by GR. Combining these, we found 544

metabolic genes overall and 120 in our list of 2768 genes. Finally, 65 genes were both immune and

metabolic overall, and 12 were both immune and metabolic in our geneset.

Transcription Factors were called using the Bioguo database of Human Transcription Factors

[50]. There were 1463 factors overall and 226 present in our list of 2768 genes.

GR direct targets were called based on the binding data of GR [5]. These genes were found to be

up-regulated at timepoints 0.5, 1, or 2 hours after initial treatment with dexamethasone, and had GR

binding within 10 kb of the transcription start site. Up-regulation was called based on a differential

expression test between a gene’s expression at one timepoint with the basal timepoint at FDR 0.01.

This calling method included several positive controls such as DUSP1 [51] and PER1 [52]. The

method resulted in 111 genes. All 111 of these genes were included in our set of differentially

expressed genes by definition.

6. Results

6.1. Preliminary Analysis: Simulations

The goal of this section was to test the Vector Autoregression on a simplified gene dynamical system

to ensure it could recover the true underlying relations. We found that lags of 2 and greater were

able to do so. This informed our decision to use the lag 2 network in the analysis of the GR data

(Section 6.5).
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6.2. Simulated Dynamical System

We applied the Vector Autoregression method to 2 simulated gene dynamical systems as a first

test of whether it could recover true causal relations. We based our system off the system used by

Mugler [53], which they successfully use to study the competence circuit in Bacillus subtilis. Their

system models the copy number of each gene via differential equations that represent transcription

and degradation. Activation/repression dynamics are further modelled using Hill kinetic equations.

The general form of these equations is in Equation 17. In this example, A is activated by B,

and both compete to be degraded by an enzyme. As the authors in [53] show, these equations can

produced stimulation and oscillation circuit dynamics; similar dynamics are evident in our GR data.

An explanation of the parameters is in Table 1.

dA
dt

= (αA +βA
1

1+(KA/[B])nA
−λA−

δA

1+[A]/γA +[B]/γB
)[A] (17)

We tested Vector Autoregression on two dynamical systems: Z→ X → Y and Z→ X ,Z→ Y

(Figure 2 A-B), where → represents an activation relationship. Our motivation was to ensure

that VAR could detect the basic presence and absence of regulatory relationships. The complete

equations for these are listed in Tables 2 and 3. As the authors do in [53] did, we included a gene A

involved in a feedback loop with Z, to introduce oscillation dynamics to the circuit.

The simulation data was gathered using StochPy [54]. After simulating the system for 20000

seconds, we sampled the data by averaging all the expression values over each 30-minute interval,

thus producing a 111 timepoint dataset (Figure 2 C-D).
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Parameter Description
αA Basal expression rate for A
βA Maximum activated expression rate of A
KA Concentration of A producing half the maximum expression rate.
nA Hill Coefficient describing the binding cooperativity.
λA Basal degradation rate constant for A
δA Maximal degradation rate of A due to enzyme
γA Michaelis-Menten constant of A’s binding with enzyme
γB Michaelis-Menten constant of B’s binding with enzyme

Table 1: Parameters in Simulated Gene Dynamical System.

Reaction Rate Constant Additional Parameters Notes
PolZ → Z αZ +βZ

[Z]nZ

K
nZ
Z +[Z]nZ

αZ = 0.9 hr−1, βZ = 0.03,nZ = 2,KZ = 20 Z self-activates

Z→ pool δZ
1+[Z]/γZ+[A]/γA

+λZ δZ = 0.001,λZ = 0.0001,γZ = 100,γA = 1 Z & A competitively degraded

PolX → X αX +βX
[Z]nX

K
nX
X +[Z]nX

αX = 0,βX = 0.003,nX = 5,KX = 20 Z activates X

X → pool λX λX = 0.0001 X linearly degraded
PolY → Y αY +βY

[X ]nY

K
nY
Y +[X ]nY

αY = 0,βY = 0.003,nY = 5,KY = 10 X activates Y

Y → pool λY λY = 0.0001 Y linearly degraded
PolA→ A αA +βA

1
1+([Z]/KA)

nA αA = 0,βA = 0.003,nA = 5,KA = 3.3 Z represses A.

A→ pool δA
1+[Z]/γZ+[A]/γA

+λA δA = 0.001,λA = 0.0001,γZ = 100,γA = 1 Z & A competitively degraded

Table 2: Complete reaction dynamics of Z→X→Y circuit. Here, gene A adds oscillation
to the circuit by being repressed by Z and competitively degraded with Z. The same
model as in [53] was used.

Reaction Rate Constant Additional Parameters Notes
PolZ → Z αZ +βZ

[Z]nZ

K
nZ
Z +[Z]nZ

αZ = 0.9 hr−1, βZ = 0.03,nZ = 2,KZ = 20 Z activates its own expression

Z→ pool δZ
1+[Z]/γZ+[A]/γA

+λZ δZ = 0.001,λZ = 0.0001,γZ = 100,γA = 1 Degradation of Z

PolX → X αX +βX
[Z]nX

K
nX
X +[Z]nX

αX = 0,βX = 0.003,nX = 5,KX = 20 Z activates X

X → pool λX λX = 0.0001 Linear degradation of X
PolY → Y αY +βY

[Z]nY

K
nY
Y +[Z]nY

αY = 0,βY = 0.003,nY = 5,KY = 10 Z activates Y

Y → pool λY λY = 0.0001 Linear degradation of Y
PolA→ A αA +βA

1
1+([Z]/KA)

nA αA = 0,βA = 0.003,nA = 5,KA = 3.3 Z represses A.

A→ pool δA
1+[Z]/γZ+[A]/γA

+λA δA = 0.001,λA = 0.0001,γZ = 100,γA = 1 Degradation of A

Table 3: Complete reaction dynamics of Z→ X ,Z→ Y circuit. The only difference from
Z→ X → Y in Table 2 is that Z directly activates Y instead of via X . Here, gene A adds
oscillation to the circuit by being repressed by Z and competitively degraded with Z.
The same model as in [53] was used.

6.3. Performance of Causal Tests on Simulated System

We performed pairwise VAR tests for all possible cause-effect pairs of the set {Z,X ,Y,A}. Signifi-

cance of the Causal relation was evaluated by performing an F-test, assessing if the model of the
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Figure 2: Causal Test Performance on Simulated Gene Dynamical system. (A-B)
Schematic of regulatory relationships for Z → X → Y and Z → X ,Z → Y , respectively.
Transcribed proteins (colored shapes) are shown as promotors for subsequent genes.
(C-D) Simulated time series for Z → X → Y and Z → X ,Z → Y , respectively. 111 time-
points were taken at intervals of 1800 seconds. (E-F) P-value matrices of causal VAR
fits between genes in the Z→ X → Y and Z→ X ,Z→ Y systems, respectively. Each ma-
trix corresponds with the fit from a chosen lag K in {1, . . . ,9}. The darkness of the box
is the significance of the causal relation, log10 p-value of the causal fit from performing
an F-test.
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effect gene with the causal gene as a predictor had a significantly better fit than the model of the

effect gene without the causal gene as a predictor.

We found that the test was able to accurately recover the underlying dynamics for lags greater

than 1 (Figure 2 E-F) under an FDR of 0.05. In Z→ X → Y , Z is detected as causal for X and Y ,

and X is detected as causal for Y (Figure 2 E), In Z→ X ,Z→ Y , Z is indeed detected as causal for

X and for Y , and there is correctly no causal relation between X and Y (Figure 2 F).

6.4. Preliminary Analysis: GR Networks

6.4.1. Comparison Run

We quantified the effects of different parameter settings from our pipeline on the resulting

directed networks. We ran the data through 8 different parameter settings, representing changes

to normalization, null, and FDR thresholds (Table 4). For each setting, we used three types of

regularization—lasso, elastic net, and ridge—and lags 1 and 2. We compared the network results to

determine the appropriate parameter settings. Our main finding was that use of the global null and

local FDR setting provided the greatest power and stability of the edge numbers.

Our first finding was that the local null was very difficult to reject, resulting in networks of size 0

(Table 4 E-H). This was because the local null coefficients had very large magnitude (Figure 3, top))

compared with the true coefficients. This may be partially explained by the fact that the many of

2768 gene temporal profiles are highly correlated. Removal of one of the predictor genes would not

result in a drastic loss of predictive power because the gene temporal profiles were so similar. On

the other hand, the randomized set of gene expression values could produce a unique gene temporal

profile which could fit some aspect of the target gene better than the original values. This could

explain the larger null coefficients. In contrast, under the global null, the randomized distribution

had a narrower spread than the true coefficient distribution (Figure 3, bottom). The decreased spread

allows normal coefficients to be declared significant.
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Figure 3: Causal coefficient distribution under local and global nulls. Top: under the local
null, the randomized coefficients have much larger spread than normal coefficients,
preventing any normal coefficients from being declared significant. Bottom: under the
global null, the randomized coefficients have much narrower spread, allowing normal
coefficients to be declared significant.

To select an FDR type, we found that using a global FDR was not robust, as a single permuted

coefficient with high value could prevent a majority of true coefficients from being declared

significant. These size issues are evident in the global null, global FDR network for zero-mean

unit-variance normalization (Table 4 A). Here, the elastic net lag-1 network is found to be sparser

than the lasso lag-1 network (170 and 841 edges, respectively), which runs contrary to existing

theory that the lasso should be the sparsest network [31]. A similar problem was in the global null,

global FDR network for zero-mean unstandardized normalization (Table 4 C) in which the ridge-1

network has only 82 edges, two orders of magnitude below the elastic net, despite not encouraging

explicit sparsity in the coefficients [31].

The local FDR was less vulnerable to significance testing effects. The networks had on the order
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of 103−105 edges, which is proportional to the number of genes 2,768, as compared with the 102

edges found by the global FDR approach (Table 4 B, D). Therefore, we chose the parameter setting

of global null, local FDR for analysis of the GR networks.

6.4.2. Selecting Causal Networks for Downstream Analysis

After the comparison run, we chose four final networks to analyze in more detail. These networks

shared the global null and local FDR based on our findings from the previous section. The network

each used the elastic net penalty out of the lasso, elastic net, and ridge penalties. We chose the

elastic net penalty over lasso because it allowed the selection of correlated predictors [31] whereas

Lasso will only select one. As many genes are highly correlated over the short time series and the

goal is to uncover possible interactions, we chose to use the elastic net penalty over lasso. Finally,

we chose the elastic net over ridge because of the elastic net penalty fitted sparser, parsimonious

models. The elastic net networks found on the order of 10,000 edges, compared with the ridge on

the order of 100,000 edges.

Each network used one of the 4 unique combinations of two run options: normalization and lag

number. The two options for normalization include: 1) gene temporal profiles were standardized

to zero-mean unit-variance, or 2) gene temporal profiles were centered at zero-mean (zero-mean

unstandardized). The lag number is the number of previous time points included to infer causal

effects in the model; it was set to either 1 or 2 time points because of the sparse sampling of these

observations across time.

We shall refer to the networks using the following abbreviations:

• Zero-mean Standardized, elastic net lag 1 (ZS-1)

• Zero-mean Standardized, elastic net lag 2 (ZS-2)

• Zero-mean Unstandardized, elastic net lag 1 (ZU-1)

• Zero-mean Unstandardized, elastic net lag 2 (ZU-2)

6.4.3. Individual Network Analysis

We ran VAR-GEN on the networks and computed several basic statistics of our networks (Table

5, the frequency of various edge types (Table 6), and the odds ratios of those edge types (Table 7,
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Batch Network Test Lag Normalization Null FDR Hyper Sig.
Edges

Sig.
Edges (%)

Causal
Genes

Effect
Genes

A lasso-1 lasso 1 zero-mean unit-variance global global 1.00E-04 841 0.01 311 705
enet-1 enet 1 zero-mean unit-variance global global (1E-03, 1E-01) 170 0 78 157
ridge-1 ridge 1 zero-mean unit-variance global global 1.00E-04 502440 6.56 2358 2768
lasso-2 lasso 2 zero-mean unit-variance global global 1.00E-02 9 0 9 9
enet-2 enet 2 zero-mean unit-variance global global (1E-01, 1E-01) 1494 0.02 302 962
ridge-2 ridge 2 zero-mean unit-variance global global 1.00E+02 465810 6.08 2258 2749

B lasso-1 lasso 1 zero-mean unit-variance global local 1E-04 7882 0.1 828 2444
enet-1 enet 1 zero-mean unit-variance global local (1E-03, 1E-01) 10546 0.14 758 2195
ridge-1 ridge 1 zero-mean unit-variance global local 1E-04 549627 7.18 2463 2744
lasso-2 lasso 2 zero-mean unit-variance global local 1E-02 8976 0.12 1063 2577
enet-2 enet 2 zero-mean unit-variance global local (1E-01, 1E-01) 13879 0.18 860 2525
ridge-2 ridge 2 zero-mean unit-variance global local 1E+02 638575 8.34 2680 2678

C lasso-1 lasso 1 zero-mean unstandardized global global 1E-04 12171 0.16 711 2254
enet-1 enet 1 zero-mean unstandardized global global (1E-03, 1E-01) 1479 0.02 149 539
ridge-1 ridge 1 zero-mean unstandardized global global 1E-06 82 0.0 21 45
lasso-2 lasso 2 zero-mean unstandardized global global 1E-02 295 0.0 66 124
enet-2 enet 2 zero-mean unstandardized global global (1E-03, 1E-01) 41 0.0 14 26
ridge-2 ridge 2 zero-mean unstandardized global global 1E+00 43 0.0 7 27

D lasso-1 lasso 1 zero-mean unstandardized global local 1E-04 27330 0.36 867 2759
enet-1 enet 1 zero-mean unstandardized global local (1E-03, 1E-01) 23025 0.3 708 2721
ridge-1 ridge 1 zero-mean unstandardized global local 1E-06 233931 3.05 2653 2643
lasso-2 lasso 2 zero-mean unstandardized global local 1E-02 4587 0.06 184 2443
enet-2 enet 2 zero-mean unstandardized global local (1E-03, 1E-01) 27781 0.36 617 2744
ridge-2 ridge 2 zero-mean unstandardized global local 1E+00 158340 2.07 2502 2627

E lasso-1 lasso 1 zero-mean unit-variance local global 1E-04 0 0.0 0 0
ridge-1 ridge 1 zero-mean unit-variance local global 1E-04 0 0.0 0 0
lasso-2 lasso 2 zero-mean unit-variance local global 1E-02 0 0.0 0 0
enet-2 enet 2 zero-mean unit-variance local global (1E-01, 1E-01) 0 0.0 0 0
ridge-2 ridge 2 zero-mean unit-variance local global 1E+02 0 0.0 0 0

F lasso-1 lasso 1 zero-mean unit-variance local local 1E-04 1220 0.02 418 323
ridge-1 ridge 1 zero-mean unit-variance local local 1E-04 6457 0.08 2724 4
lasso-2 lasso 2 zero-mean unit-variance local local 1E-02 2639 0.03 663 1184
enet-2 enet 2 zero-mean unit-variance local local (1E-01, 1E-01) 180 0.0 90 136
ridge-2 ridge 2 zero-mean unit-variance local local 1E+02 4 0.0 4 4

G lasso-1 lasso 1 zero-mean unstandardized local global 1E-04 0 0.0 0 0
enet-1 enet 1 zero-mean unstandardized local global (1E-03, 1E-01) 0 0.0 0 0
ridge-1 ridge 1 zero-mean unstandardized local global 1E-06 0 0.0 0 0
lasso-2 lasso 2 zero-mean unstandardized local global 1E-02 0 0.0 0 0
ridge-2 ridge 2 zero-mean unstandardized local global 1E+00 0 0.0 0 0

H lasso-1 lasso 1 zero-mean unstandardized local local 1E-04 1046 0.01 327 561
enet-1 enet 1 zero-mean unstandardized local local (1E-03, 1E-01) 169 0.0 71 130
ridge-1 ridge 1 zero-mean unstandardized local local 1E-06 2300 0.03 2254 3
lasso-2 lasso 2 zero-mean unstandardized local local 1E-02 2859 0.04 101 1680
ridge-2 ridge 2 zero-mean unstandardized local local 1E+00 0 0.0 0 0

Table 4: Network run results under various parameter settings. Each of the 8 batches
uses a unique combination of normalization (zero-mean unit-variance or zero-mean un-
standardized), null (global or local), and FDR (global or local). Each batches has 6 runs,
with the lasso, elastic net, or ridge penalties, and lag 1 or 2.
The batch of local null networks are very spare (E-H). Note that the networks that use
global FDR (A, C) sometimes have the elastic net and ridge networks more sparse than
the lasso network of corresponding setting; this is inconsistent with the trend that the
lasso should be the sparsest penalty. The bolded rows were those analyzed in-depth in
Section 6.4.2.

Figure 4) to detect enrichment of edge types. We now performing the following analysis of each

individual network:
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1. the presence and enrichment of Transcription Factor-Causal Edges (edges where the causal gene

is a Transcription Factor),Transcription Factor-Effect Edges, Immune-Causal Edges, Immune-

Effect Edges, Metabolic-Causal Edges, and Metabolic-Effect Edges,

2. transcription factors with the highest out-degree,

3. immune and metabolic genes with the highest number of TF Causes and Effects.

The motivation for analysis 1 is to get a sense of the overall biological function of network edges.

The motivation for analysis 2 is to find transcription factors, which have causal roles in regulation,

which may play broad roles in the network. The motivation for analysis 3 is to find immune and

metabolic gnes that may be highly affected in the networks as dwonstream targets.

Network Test Lag Normalization Null FDR Hyper Sig.
Edges

Sig.
Edges (%)

Causal
Genes

Effect
Genes

ZS-1 enet 1 zero-mean
unit-variance

global local (1E-03, 1E-01) 10546 0.14 758 2195

ZS-2 enet 2 zero-mean
unit-variance

global local (1E-01, 1E-01) 13879 0.18 860 2525

ZU-1 enet 1 zero-mean un-
standardized

global local (1E-03, 1E-01) 23025 0.3 708 2721

ZU-2 enet 2 zero-mean un-
standardized

global local (1E-03, 1E-01) 27781 0.36 617 2744

Table 5: Run Summary for GR Causal Networks. Parameter settings and basic network
statistics for the network runs are listed here. All networks use an FDR threshold of
0.05. "Hyper" refers to the hyperparameter used in the penalty. For Elastic net, hyper is
of form (λ , α) where λ controls regularization and α is the l1-ratio.

Network Edges TF-Causal
Edges

TF-Effect
Edges

Immune-
Causal Edges

Immune-
Effect Edges

Metabolic-
Causal Edges

Metabolic-
Effect Edges

ZS-1 10546 828 (7.9%) 898 (8.5%) 422 (4%) 415 (3.9%) 372 (3.5%) 435 (4.1%)
ZS-2 13879 1136 (8.2%) 1096 (7.9%) 367 (2.6%) 545 (3.9%) 636 (4.6%) 629 (4.5%)
ZS-1 23025 1677 (7.3%) 1900 (8.3%) 2410 (10.5%) 834 (3.6%) 1309 (5.7%) 1001 (4.3%)
ZS-2 27781 1931 (7%) 2393 (8.6%) 2119 (7.6%) 1047 (3.8%) 2271 (8.2%) 1211 (4.4%)

Table 6: Frequency of Edge Types in Causal Networks. Percentages are calculated
relative to the individual network’s total edges.
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Network Edges TF-Causal
Edges

TF-Effect
Edges

Immune-
Causal Edges

Immune-
Effect Edges

Metabolic-
Causal Edges

Metabolic-
Effect Edges

ZS-1 10546 0.96 1.05 1.02 1 0.81 0.95
ZS-2 13879 1 0.96 0.66 1 1.06 1.05
ZU-1 23025 0.88 1.01 2.87 0.92 1.33 1
ZU-2 27781 0.84 1.06 2.02 0.95 1.97 1.01

Table 7: Odds Ratios of Edge Type in Causal Networks. Odds ratios significantly larger
than 1 indicate enrichment for that edge type within the network. Note enrichment of
immune-causal edges in ZU-1 and ZU-2, and of metabolic-causal edges in ZU-2. This
corresponds with Figure 4.
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Figure 4: Odds Ratio enrichment for Edge types across the 4 GR causal networks. "TF",
"IMM’, "METAB", "ANY" refer to transcription factor, immune, metabolic, and any gene,
respectively. For example, "TF-ANY" refers to edges with transcription factor as cause.
A baseline odds ratio is 1.0; larger (darker) indicates enrichment. Note enrichment of
immune-causal edges ("IMM-ANY") in ZU-1 and ZU-2, and of metabolic-causal edges
("METAB-ANY") in ZU-2.

We find that the zero-mean standardized lag 1 (ZS-1) causal network contains 10546 edges,

among which 828(7.9%) have a transcription factor as cause and 898(8.5%) have a transcription

factor as effect. We found that the causal transcription factor with the greatest out-degree of 139 was

RXRB, which is highly related to metabolism. RXRB encodes a member of a family of the retinoid X

receptor nuclear receptors, several of which interact with the PPARα protein to trigger transcription

of genes involved in gluconeogenesis and lipid metabolism [55]. Two other high out-degree TFs

were PRDM1 and POU5F1, which had out-degrees of 65 and 28, respectively. Both are GR direct
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targets (Section 5.3, and PRDM1 is involved in inducing the maturation of B cells [56]. The network

had a modest number of edges that involved a metabolic/immune gene as cause or effect, ranging

from 372(3.5%) to 435(4.1%). The network had no enrichment of any edge type, with odds ratios

very close to 1. Among immune genes, BIRC3 had the highest number of Transcription Factor

causes, 3. BIRC3 encodes cIAP2, an inhibitor of apoptosis found to be under-expressed in T cells

from multiple sclrosis patients [57, 58]. It is also a direct target of GR. Among metabolic genes,

RXRA was one of the genes with the highest number of Transcription Factor causes 2. It is itself a

transcription factor whose interaction with PPARα regulates expression of genes involved in lipid

metabolism [55]

We find that the zero-mean unit-variance lag 2 (ZS-2) causal network contains 13879 edges,

among which 1136(8.2%) have a transcription factor as cause and 1096(7.9%) have a transcription

factor as effect. ETS1 had the highest out-degree among transcription factors, 86. ETS1 is found to

be highly immune-related . It serves as an important transcription factor controlling the expression

of cytokine and chemokine genes, regulating the differentiation of a variety of leukocytes, and is

involved in the B-Cell Receptor Signaling Pathway [59, 55]. There were modest number of edges

involving a metabolic/immune gene as cause or effect, ranging from 367(2.6%) to 636(4.6%).

Among immune genes, CXCL2 had the highest number of Transcription Factor causes, 4. CXCL2

helps to encode chemokines, a family of proteins that are involved in inflammatory and immune

response [60, 55]. Among metabolic genes, ALDH7A1 had the highest number of Transcription

Factor causes, 3. This gene is involved in glycolysis/gluconeogenesis via its role in metabolizing

toxic aldehydes generated by oxidative processes such as alcohol metabolism [61, 62]. The network

had no enrichment for any edge type, with odds ratios very close to 1.

We find that the zero-mean unstandardized lag 1 (ZU-1) causal network contains 23025 edges,

among which 1677(7.3%) have a transcription factor as cause and 1900(8.3%) have a transcription

factor as effect. The TF with highest out-degree was POU5F1, with out-degree 263. Recall

POU5F1 is likely a direct target of GR [5]; thus, its causal relations may pay a key role in the

overall glucocorticoid response. Interestingly, in the network we found enrichment of edges with an
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immune gene as cause: 2410(11%), with odds-ratio 2.9. The immune gene with highest out-degree

was CEACAM6 at 577. 25 of CEACAM6’s effects are Immune-related. CEACAM6 encodes a type

of carcinoembryonic antigen. Such proteins are involved in cell adhesion, and are widely used as

tumor markers in serum immunoassay determinations of carcinoma [63, 64]. There were a modest

number of edges with immune effects or metabolic causes/effects 834(3.6%) to 1309(5.7%). RXRA

was among the metabolic genes with highest number of Transcription Factor Causes, 4. Again,

RXRA is itself a Transcription Factor, whose interaction with PPARα regulates expression of genes

involved in lipid metabolism [55]. Among immune genes, TCIRG1 had the highest number of

Transcription Factor causes, 4. TCIRG1 encodes TIRC7, which has a negative inhibitory role on

immune and inflammatory response [65, 66].

Finally, we find that the zero-mean unstandardized lag 2 (ZU-2) causal network contains 27781

edges, among which 1931(7%) have a transcription factor as cause and 2393(8.6%) have a tran-

scription factor as effect. The TF with highest out-degree was ZNF114, with out-degree 462. We

were unable to find annotations of ZNF114 related to our immune/metabolic effects of interest.

Interestingly, there are enrichment of edges with immune causes: 2119(7.6%), with odds ratio 2.0.

There was also enrichment of edges with metabolic causes: 2271(8.2%), with odds ratio 1.97. The

immune gene with highest out-degree was OLR1, with out-degree 398. OLR1 is a downstream target

of the PPAR signaling pathway which affect lipid metabolism [55]. OLR1 is specifically involved

in Fatty Acid Transport as a receptor of oxidized low-density lipoprotein; moreover it also plays

a role in inflammation [67, 68, 55]. The metabolic gene with highest out-degree was ANGPTL4

with out-degree 615. ANGPTL4 is also a direct target of GR. ANGPTL4 is a target of the PPAR

receptors and regulates glucose and lipid metabolism [69, 70, 55]. There were a modest number

of edges with immune effects or metabolic effects: 1047(3.8%) to 1211(4.4%). Among immune

genes, FOS had the highest number of Transcription Factor Causes, 5. FOS is a member of the

glucocorticoid pathway and encodes a component of the transcription factor complex AP−1, which

regulates cell differentiation and proliferation in response to a variety of stimuli such as growth

factors and cytokines [71]. ANGPTL4 was one of the metabolic genes with the most Transcription
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Factor Causes, 4.

6.4.4. Cross-Network Analysis

We then performed analysis across the 4 networks. We evaluated the intersections and odds ratios

between networks. We then discuss edges of biological interest that were preserved across the

networks.
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Figure 5: Overlap between the 4 GR causal networks. Left: log10 values of the number
of intersecting edges among the networks. Right: log10 values of the odds ratio of two
networks’ intersection. There is substantial overlap between every pair of networks.

There are high intersection and odds ratios among the different parameter settings of the network

runs (Figure 5).

The highest intersections were between the networks with the same normalization. In particular,

the zero-mean Standardized Lag 1 (ZS-1) and 2 (ZS-2) networks share 2598 edges with an odds

ratio of 221. The zero-mean Unstandardized Lag 1 (ZU-1) and 2 (ZU-2) networks share 6203 edges

with an odds ratio of 130. Across the normalizations, the number of shared edges ranged from 784

to 6203, with odds ratios from 22.7 to 61.8.

We next investigated several of the top causal interactions preserved across these 4 networks

(Table 8).

We found the transcription factor POU5F1 to be strongly causal to the cytokine CXCL1; CXCL1’s

expression is dramatically reduced following increase of the POU5F1 expression level (not shown).

This interaction suggests that POU5F1 may play a key causal role in inflammation reduction through
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the transcriptional repression of CXCL1. Several consistent interactions between transcription

factors and metabolism-related genes were also observed. In particular, the TF TEF is inferred

as causal to PLD1, a phospholipase which regulates cytosolic lipid droplet formation [72], an

interaction likely related to GC response-induced lipolysis or fat breakdown. An intriguing finding

is the interaction between the TF PRDM1 and the circadian clock related gene CRY2. However,

further research is required to investigate the mechanism through which the beta-interferon repressor

PRDM1 interacts with the transcriptional repressor CRY2, a main circadian clock regulator which

plays a key role in glucose and lipid metabolism modulation [73, 74].

Similarly, several causal relations between immune and metabolic genes illustrate the substantial

overlap between metabolic and immune pathways following the GC response. Among the top

such interactions we found the genes IFITM2, which mediates innate immune response to a variety

of viruses, and ALDH7A1, a gene needed to metabolize toxic aldehydes and involved in stress

response [75]. Moreover, IFITM3, an interferon-induced membrane protein, was found to cause

the PRKAB2 protein-coding gene, a regulatory subunit of the AMP-activated protein kinase, which

is heavily involved in the regulation of intracellular and whole-body energy homeostasis [76, 77].

OLR1, an endothelial receptor for oxidized low-density lipoprotein, was found to be causal to the

change of expression of the gene IL1R1, a key receptor involved in innate immune response and

inflammation [78], suggesting a possible feedback mechanism. CFD, which encodes the important

adipokine adipsin needed to maintain the function of pancreatic beta cells which control normal

insulin storage and secretion [79, 80], is causal for Major Histocompatibility Complex 1 (HLA−C),

which presents antigens to cytotoxic T cells [81].
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Causal Relation Cause Annotation Target Annotation Coefficient
(average)

Frequency
(across

networks)

Networks

POU5F1→ CXCL1 Encodes component of
Oct4, a Transcription

Factor complex regulating
Embryonic Stem Cell

pluripotency pathways [82]

Chemokine that controls
the early stage of

neutrophile recruitment
during tissue inflammation

[60]

-0.21 2 ZS-1, ZU-1

IFITM3 → PRKAB2 An interferon-inducible
trans-membrane protein,
conferring resistance to
influenza A H1N1, West
Nile, and dengue viruses

[83]

Encodes β subunit 2 of
AMPK, which regulates

intracellular and
whole-body energy

homeostasis [76, 77]

-0.09 4 ZS-1, ZS-2,
ZU-1, ZU-2

CXCL2 → ARX Chemokine that controls
the early stage of

neutrophile recruitment
during tissue inflammation

[60]

Homeobox Transcription
Factor that regulates

migration of interneurons
in the brain; Mutations lead

to a variety of X-linked
intellectual disorders

[84, 85]

-0.08 4 ZS-1, ZS-2,
ZU-1, ZU-2

OLR1→ IL1R1 An endothelial receptor for
oxidized low-density

lipoprotein, it is involved
with inflammation, antigen

cross-presentation, and
atherosclerosis [67, 68]

Interleukin-1 receptor type
1, involved in the innate
immune response and

inflammation [78]

-0.08 3 ZS-2, ZU-1,
ZU-2

PRDM1→ CRY2 Encodes Blimp1,
Transcription Factor that
induces maturation of B
cells into Ab-secreting
plasma cells through
regulation of multiple
tunable pathways [56]

A key transcriptional
regulator of the

mammalian circadian clock
[86, 87]

0.08 2 ZS-1, ZU-1

IFITM2 → ALDH7A1 An interferon-inducible
trans-membrane protein,
which mediates innate
immune response to

influenza A H1N1 virus,
West Nile virus, and

dengue virus [83]

Metabolizes toxic
aldehydes generated by
oxidative processes such
as alcohol metabolism;

defends against
hyperosmotic stress

[62, 61]

-0.07 4 ZS-1, ZS-2,
ZU-1, ZU-2

TEF → PLD1 Transcription Factor that
promotes cell survival and

inhibits cell growth by
downregulating the

expression of the βc chain
[88]

Phospoholipase that
regulates cytosolic lipid
droplet formation. [72]

0.07 3 ZS-1, ZS-2,
ZU-1

CFD → HLA-C Encodes adipsin, a serine
protease and adipokine

that maintains function of
pancreatic beta cells
responsible for insulin
storage and secretion

[79, 80]

A Major Histocompatability
Complex 1 molecule that

presents antigens to
cytotoxic T cells and is

required for regulation of
natural killer cell function

[81]

0.06 3 ZS-1, ZU-1,
ZU-2

AOC2 → FANCD2 Encodes an amine oxidase
that is upregulated during
adipocyte maturation and

may be involved in
regulation of growth,
differentiation, and
apoptosis [89, 90]

The protein is involved in
DNA damage repair

through interaction with
BRCA1 and may be
needed to prevent

chromosome instability
[91, 92]

-0.06 4 ZS-1, ZS-2,
ZU-1, ZU-2

FGG→ C1RL Forms the gamma chain of
fibrinogen, a crucial
protein for blood clot

formation [93]

Serine protease that
mediates cleavage of a
proform of haptoglobin,
which regulates T-cell

mediated immune
responses [94, 95]

0.06 3 ZS-1, ZS-2,
ZU-1

Table 8: Top causal relations preserved across the 4 GR Causal Networks.
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6.5. Analysis: GR Causal Network.

6.5.1. Biological Analysis

The work and writing in this section was a collaborative effort between me, Bianca Dumitrascu,

and Prof. Barbara Engelhardt. My primarily role was to gather statistics and annotations, and

create the tables. I wrote initial paragraphs on the annotations, though these were substantially

revised by Bianca and Prof. Engelhardt. Figures 6 - 7 were created by Bianca.

Of the 4 possible networks that we analyzed at first (Section 6.4.2-6.4.4, we chose the zero-mean

unstandardized lag 2 (ZU-2) network for more in-depth analysis. We chose lag 2 since it can

capture both lag 1 and lag 2 relationships; furthermore, in previous simulations (not shown), lag

2 successfully recovered the a higher proportion of true relationships. We chose unstandardized

because the variance of gene temporal profiles had a wide range, from almost constant profiles to

drastic increases and decreases. Normalizing these profiles over-represents weak causal effects of

the genes with higher variance.

We applied VAR-GEN to the GC-mediated expression responses to infer a causal network

(Figure 6A). The network contains 27,781 directed edges and 2,747 nodes representing distinct

genes. Transcription factors (TFs) represent 8.2% of nodes; TFs are causal in 1,931 pairwise

interactions (7%) and effects in 2,393 interactions (8.6%). The inferred network follows a power

law-like distribution on edge degree that has been observed in similar biological networks [96, 97],

with the in-degree distribution appearing approximately Gaussian (Figure 6D,E,F).
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Figure 6: Network summary of the regulatory dynamics of the GC response A: Di-
rected gene network illustrating the interplay between immune-related genes (red) and
metabolic-related genes (blue); B-C: Radial plot views of the VAR-GEN output with edge
color reflecting the annotation of the effect node (B) and causal node (C); D: histogram
illustrating the distribution of in-degree across nodes in the network; E: histogram illus-
trating the distribution of out-degrees across the inferred network; F: a quantile-quantile
plot showing the quantiles of the empirical distribution of out-degree and quantiles of
a normal distribution.

Using Gene Set Enrichment Analysis (GSEA) and Gene Ontology annotations, we labeled genes

in the network with immune or metabolic function [49, 47]. We found 97 and 108 genes with

immune and metabolic functions, respectively, and 12 genes associated with both immune and

metabolic functions (Figure 6B,C). The annotated immune and metabolic genes, despite making

up less than 10% of nodes, were twice as likely to be causes rather than effects in the network

(Table 7, Figure 4), suggesting that the diverse transcriptional effects of GC exposure have yet to be

characterized.

Among the most well connected genes in our network are OLR1 and ANGPTL4. (Figure 7C,D).

OLR1 is an immune-related gene involved in fatty acid transport [55] with 398 predicted effect
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genes. Although annotated as an immune-related gene, OLR1 (Figure 7C) is also involved in

metabolic processes as a downstream target of the PPAR signaling pathway, which affects lipid

metabolism [55]. Similarly, ANGPTL4 is a metabolism-related gene with 615 predicted effect genes.

ANGPTL4 was previously found to be a direct target of the GC receptor [70]. Two genes with

predicted effects from ANGPTL4, ACSL1 and SLC2A14, are related to fatty-acid metabolism [98]

and glucose transport [99], respectively. Together with OLR1, ANGPTL4 is a target of the PPAR

receptors [100, 101].

Next, we investigated the network genes with metabolic effects. We found that SOCS3, CXCL1,

and CCL2 were among the network genes with the largest number of effects that were metabolism-

related. SOCS3 (Figure 7A) is a protein-coding gene involved in the inhibition of cytokine signal

transduction that has been associated with the GC response pathways [102]. Among its targets, the

multifunctional cytokines IL11 and EDN1 have both been functionally associated with glycemic

control and signaling pathways related to diabetes [103]. Moreover, CXCL1 is a chemokine with a

role in controlling the early stage of neutrophil recruitment during tissue inflammation [104, 105].

This gene has been linked to a variety of autoimmune diseases, including Type 1 Diabetes Mellitus

(T1DM) [106, 105], and Type 2 Diabetes Mellitus (T2DM) [107]. Similarly, CCL2 is a chemokine

identified as a probable mediator between immune function and metabolic dysfunctions [108, 109].

The most well-connected transcription factor in the network, ZNF114, was predicted to have 25

metabolic effects, including SLC7A11, a gene involved in cysteine-glutamate transport [110]; its

overexpression is associated with altered cellular metabolism in glioma cells [111]. Together, these

results suggest a complex interplay between immune response pathways and metabolic pathways.
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Causal relation Cause annotation Effect annotation
NHLRC1→ CALB2 Codes for the E3 protein-ubiquitin ligase

malin, which downregulates glycogen
synthesis, and is regulated by AMPK

[112]

A calcium-binding protein primarily
expressed in neurons [113]

ANGPTL4→ SDS Regulates lipid and glucose metabolism,
and is a direct target of the glucocorticoid

receptor [69, 70]

Involved in metabolism of amino acids
such as serine and glycine [114]

CRABP2 → HIST1H1D Involved in the metabolism and transport
of retinoic acid [115]

Codes for a member of the histone H1
family [116]

ANGPTL4→ CILP Regulates lipid and glucose metabolism,
and is a direct target of the glucocorticoid

receptor [69, 70]

An essential cartilage matrix protein that
is associated with diseases such as

lumbar disc disease [117]
ANGPTL4→ SLC2A14 Regulates lipid and glucose metabolism,

and is a direct target of the glucocorticoid
receptor [69, 70]

Encodes the GLUT14, a major glucose
transporter [99]

ANGPTL4→ ACSL1 Regulates lipid and glucose metabolism,
and is a direct target of the glucocorticoid

receptor [69, 70]

Encodes an acyl-CoA synthetase that
plays a key role in lipid biosynthesis and

fatty acid degradation [98]
ZNF114→ SLC7A11 A zinc finger transcription factor [50] A cysteine-glutamate antiporter; its

dysfunction leads to a variety of central
nervous system disorders [110]

Table 9: Top causal relationships predicted by VAR-GEN in the GC response data. Rela-
tionships with causal coefficients ranking in the top 1% were selected. The second and
third column describe the functional annotations of the cause gene and effect gene,
respectively.

We further investigated the causal neighbourhoods of immune- and metabolism-related genes

(Table 10). We were particularly interested in NFKB2 (Figure 7B) and FOSL2 (Figure 7D), which

are direct targets to the glucocorticoid receptor, GR [5] . The gene ACOT8 is predicted to effect

NFKB2 and metabolic genes ENO3 and PRKAB2. ACOT8, ENO3, and PRKAB2 play critical

roles in the regulation of energy metabolism and homeostasis. ACOT8 catalyzes the hydrolysis of

acyl-CoAs into fatty acids and the coenzyme A, an important step for lipid metabolism. Meanwhile,

ENO3 catalyzes the interconversion of 2-phosphoglycerate and phospholenolpyruvate, a critical

function for in both glycolysis and glucoeneogenesis. PRKAB2 encodes a component of the AMPK

protein kinase, which plays a broad role in regulating both intracellular and intercellular metabolism.

For example, phosphorylation of AMPK triggers production of energy-generation pathways such

as glycolysis and fatty acid oxidation [76]. PRKAB2 is an effect of IFITM3, which plays a role

in interferon (IFN) signaling; this interaction suggests another specific mechanism by which GC

exposure triggers a response to inflammation and a downstream metabolic response. ANGPTL4,

AOC2, and the glucose transporter SLC45A1 all are causal to transcription factor FOSL2. No effects
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of FOSL2 were predicted by the network. This may be due to the mechanisms through which

FOSL2 regulates transcription: as a leucine zipper protein, it is likely to dimerize with proteins from

other transcription factor families, leading to nonlinear dependencies that are not be captured by

VAR-GEN.

The network predicts several relationships involving genes that are involved in cytokine signaling.

SOCS3 (Figure 7A), a cytokine-signalling suppressor [118], is predicted to be causal to IL11, an

interleukin related to clinical conditions including T1DM and T2DM [119]. CD14 is predicted

to affect another cytokine, SOCS1. CD14 is a surface co-receptor for lipopolysaccharides, which

enables immune response in various organisms [120].

Causal Relation Relation Type Cause Annotation Target Annotation
ACOT8 → ENO3 M → M An acyl-CoA thioesterase involved in fatty

acid oxidation [121]
An enolase isoenzyme, a key catalyst for

the glycolytic pathway in muscle [122]
ACOT8 → PRKAB2 M → M An acyl-CoA thioesterase involved in fatty

acid oxidation [121]
Encodes β subunit 2 of AMPK, which
regulates intracellular and whole-body

energy homeostasis [76, 77]
SDS → CUL7 M → M Involved in metabolism of amino acids

such as serine and glycine [114]
A ligase that targets Insulin receptor

substrate 1 for degradation [123]
CD14→ SOCS1 I → I A co-receptor for detection of bacterial

lipopolysaccharide, [124]
A suppressor of cytokine signaling as well
as proliferative signaling; its expression is

induced by inflammation [125, 126]
SOCS3 → IL11 I → I A suppressor of cytokine signaling; its

expression is induced by inflammation
[118, 126]

An important interleukin that also
functions as an adipogenesis inhibitory

factor [127]
OLR1→ IL1R1 I → I An endothelial receptor for oxidized

low-density lipoprotein, it is involved with
inflammation, antigen cross-presentation,

and atherosclerosis [67, 68]

Interleukin-1 receptor type 1, involved in
the innate immune response and

inflammation [78]

CFD → HLA-C I → I Encodes adipsin, a serine protease and
adipokine that maintains function of
pancreatic beta cells responsible for
insulin storage and secretion [79, 80]

A Major Histocompatability Complex 1
molecule required for regulation of natural

killer cell function [81]

IFITM2 → ALDH7A1 I → M An interferon-inducible trans-membrane
protein, which mediates innate immune

response to influenza A H1N1 virus, West
Nile virus, and dengue virus [83]

Metabolizes toxic aldehydes generated by
oxidative processes such as alcohol

metabolism; defends against
hyperosmotic stress [62, 61]

ANGPTL4→ IRAK2 M → I Regulates lipid and glucose metabolism,
and is a direct target of the glucocorticoid

receptor [69, 70]

A kinase for the interleukin-1-receptor,
which mediates the widespread

inflammatory effects of IL-1 signaling [128]
OLR1→ TRAF2 I/M → I/M An endothelial receptor for oxidized

low-density lipoprotein, it is involved with
inflammation, antigen cross-presentation,

and atherosclerosis [67, 68]

Mediates TNF-directed activation of
NF-kappa B and immune response;

enhances glucagon signaling to promote
gluconeogenesis [129, 130]

Table 10: Immune and metabolic causal interactions predicted by VAR-GEN in the GC re-
sponse data. We highlight metabolic (M) and immune-related genes (I).

6.5.2. Validation

The work behind this section was primarily a collaborative effort between Brian Jo, Bianca
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Dumitrascu, and Prof. Barbara Engelhardt. I summarize the work below. The complete section,

written by those authors, can be found in the Appendix, Section A.2.

We validated our network using association tests on external gene expression data. Briefly, if

there exists a true cause-effect relationship X→ Y, the expression of X and Y should be dependent.

We should be able to detect this relationship by performing an association test. Broadly, a Single

Nucleotide Polymorphism (SNP) is identified within 20 kb of the the causal gene X . This SNP is

tested for association with the effect gene Y ’s expression values; a significantly associated SNP is

referred to as an expression Quantitative Trait Locus (eQTL). If for X→ Y, we find a significant

association between a cis-SNP of X and the expression of Y, we consider the edge validated. A full

description can be found in the Appendix, Section A.1.

We performed this test for our network edges in expression data of a variety of tissues, including

lung; this was from the Genotype Tissue Expression (GTEx) Consortium [131]. We found that an

enrichment of low p-values of our edges compared to permuted values, which suggests that the

network edges have a higher likelihood of finding real siginal (Figure 8 A). We also found that 280

edges validated in the held-out tissues at an FDR threshold of 0.2, and in particular 81 edges were

validated from the lung tissues, . Considering a contingency table where edges validated in lung are

one group and edges validated in all other tissues are another group, a Fisher’s exact test showed

enrichment of network edges validated in lung samples. This enrichment reflects the match of the

A549 cells used in the GR data with the GTEx lung samples.

6.5.3. Experimental Prioritization

The work in this section was a collaborative effort between myself, Bianca Dumitrascu and

Barbara Engelhardt. My main contribution was in compiling the annotation information in Table

11, which laid the factual basis for the paragraph. Bianca ran the CCI score on the network.

When we apply the CCI score to the inferred network, we find that the top ranked genes are

enriched for genes with DNA metabolic processes, DNA replication, and DNA conformation change

processes (GSEA analysis, Bonferroni-corrected p-value p ≤ 0.02). The top ranking gene, the

insulin receptor IRS2, is a cytoplasmic signaling molecule known to mediate the effect of insulin on
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downstream targets, which, when absent, has been linked to diabetic conditions in mice [132, 133].

Several top ranked genes, including E3 ubiquitin-protein ligase CBLB, the krüppel-like factor

KLF6, the connective tissue growth factor CTGF, the heme oxygenase HMOX1, and the glucose

transporter SLC2A1, have been routinely associated with metabolic disorders such as wound healing

[134, 135] and obesity [136]. Moreover, the top ranked genes are enriched for those involved

in carbohydrate metabolic processes, including the glucosidase ATHL1, the galactosyltransferase

B4GALT4, the cholesterol transcriptional repressor KLB, lactate dehydrogenase A LDHA, and

two glycoproteins MUC1 and TM4SF4. Additional research is required to further characterize

and evaluate the mechanisms through which these top genes modulate the metabolic response to

glucocorticoids while circumventing control of the immune response.

Gene Gene Annotation
IRS2 An essential signaling intermediate from insulin receptors

to metabolic and mitogenic pathways; its dysregulation in
beta cells results in obesity and diabetes [137]

TAF5L Encodes a component of the PCAF histone acetylase
complex, which regulates transcription, cell cycle

progression, and differentiation [138]
PHKA1 A phosphorylase kinase which is a key regulatory enzyme

of glycogen metabolism [139]
MUC1 A mucin that lines epithetlial cells and protects the body

from pathogen infection [140]
TM4SF4 A transmembrane glycoprotein that mediates signal

transduction and can regulate cell density-dependent
proliferation [141]

ATF5 A member of the CREB family of transcription factors,
involved in intracellular signal transduction [142]

SLC2A1 Encodes the GLUT1, a major glucose transporter [143]
CTGF A connective-tissue growth factor involved in type 1

diabetes nephropathy; its inactivation leads to defects in
pancreatic beta cell proliferation [144]

COL4A3 Encodes a component of type IV collagen, which forms a
key part of basement membranes [145]

ACSL Encodes an acyl-CoA synthetase that plays a key role in
lipid biosynthesis and fatty acid degradation [98]

Table 11: Several genes with CCI score ranking in the top 1%. A high CCI rank signifies
that suppression of the gene will likely limit broad adverse metabolic effects of gluco-
corticoids while preserving the desired immune effects.

7. Conclusion

Summary

In this thesis, we have described a coherent framework for causal inference and experimental
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prioritization in gene regulatory networks. First, we have developed VAR-GEN, a robust vector-

autoregression method that infers causal networks from high-dimensional gene expression time-

series while still maintaining statistical significance. Second, we have developed CCI, a contextual

causal influence score that prioritizes genes for experimental interventions. Though the score is

tailored to our specific biological context, to preserve immune response while minimizing the

metabolic response, the Perturbation PageRank method on which CCI is based is general enough to

apply to a variety of biological and other network settings.

Before our final run over our biological data, we performed a set of preliminary analyses to

justify our choice of parameter settings. The success of higher order lags from our simulated system

analysis informed our decision to choose lag 2 for our final analysis. The comparison of different

run settings allowed us to select the global null, local FDR setting for the pipeline.

Finally, we demonstrate the validity and utility of the causal network by performing a variety

of biologically relevant analyses. We validate the network on the external gTeX data and find

enrichment of dependent relationships within our network. This strongly suggests that the method

does not simply find noise. We compute a variety of network-wide statistics while also isolating

biologically relevant genes and edges for discussion with our experimental collaborators.

We should acknowledge the limitations of both our work in particular and gene expression time

series analysis as a whole. Our method makes the strong assumption that the causal relationship is

linear. This may prevent us from capturing more complex relationships. Furthermore, we do not

address the possibility of a nonstationary (i.e. only temporarily) relationship. We also have not

compared our method to methods that are not Vector Autoregressions, such as Dynamic Bayesian

Networks.

Gene expression timeseries analysis itself has important limitations toward understand cellular

biology. It approximates protein levels with transcript levels, but there may be significant relations

that do not involve any transcripts. Furthermore, key aspects of cell control systems such as

transcription-factor binding, chromatin state and epigenetic state are not considered. Above all, it is

difficult to learn causal relations with high accuracy when the data length (around 44) is much less

49



than the number of possible edges (several million).

There are many ways we can improve and extend the work presented here. On the VAR model,

we currently assume independent and identically distributed noise at each timepoint, but this is

likely false, especially at timepoints of high activity. We ought to allow heteroscedastic noise

instead. On the network side, we ought to develop a method that can integrate information from

followup experiments to refine our understanding of the network. We could, for example, introduce

a Bayesian belief distribution over network edges and parameters, which could incorporate the new

data using the Bayesian formalism.

Finally, we plan to compare VAR-GEN to non-VAR techniques, such as the Dynamic Bayesian

Network, in their accuracy at reconstructing a simulated network from data similar to the GR data.
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Appendices

A. Validation of Network Edges

A.1. Methods

The validation work in this section was primarily conceived of, written, and implemented by Brian

Jo. I include it here for completeness. - Jonathan Lu

The out-of-sample validation study was performed with autosomal GTEx RNA-seq expression

data version v6p with the following five tissues: lung (n = 278), subcutaneous adipose (n = 297),

transformed fibroblasts (n= 272), tibial artery (n= 285), and thyroid (n= 278). We also generated a

set of permuted expression values to generate the null statistics. The set of SNPs tested were selected

from both genotyped and imputed SNPs from the same dataset, and lying in the vicinity of the

causal genes (< 20 KB). In order to reduce the rate of false positive discovery, SNPs that have MAF

< 0.05 and SNPs that are annotated as belonging to repeat regions by RepeatMasker were excluded

from analysis. The gene pairs tested were restricted to lie on different chromosomes. Association

testing was performed using Matrix-eQTL, and the model included top three genotype principal

components (calculated from genotyped variants using EIGENSTRAT), genotyping platform, sex,

and PEER factors estimated from expression data. [131] The correlation between variant and gene

expression levels was evaluated using the estimated t-statistic from this model, and corresponding

FDR was estimated using the R q-value package.

A.2. Results

The work from this section was primarily conceived, implemented, and written by Brian Jo, Bianca

Dumitrascu, and Prof. Barbara Engelhardt. I include it here for completeness. - Jonathan Lu

In order to validate our directed network edges, we tested the set of single nucleotide polymor-

phisms (SNPs) in proximity (< 20 kb) to the causal gene for association with effect genes for

every directed edge in the network [146]. If the cause-effect gene pairs in the network represent a

directed, dosage-dependent relationship, an enrichment of association p-values between the SNPs
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and the genes representing the effects of the cis-eQTL targets in the directed network should be

observed To do this, we used gene expression levels quantified in lung and four other tissues from the

Genotype Tissue Expression (GTEx) project version v6p [131]. These SNPs ought to be enriched

for associations with the local gene as expression quantitative trait loci (eQTLs). . However, it is

worth noting that the GTEx samples are entirely distinct from the cell line used for the GC study,

and the expression data is not in the form of a time series. Although much of the cis-eQTL signal

tends to be shared across tissues [131], we also compared the degree of enrichment of the distal

associations in matched and unmatched out-of-sample eQTLs with similar sample sizes using this

approach.

The five tissues (Figure 8B) that we considered from the GTEx data were lung (n = 278),

subcutaneous adipose (n = 297), transformed fibroblasts (n = 272), tibial artery (n = 285), and

thyroid (n = 278). The distal-eQTL mapping was performed by taking the set of SNPs within

20 kb of a causal gene and computing the p-value for linear association of each SNP with the

corresponding effect gene using MatrixEQTL [147] (Supplementary Materials). The matched null

distribution was generated by permuting the effect gene expression values, across all cause-effect

gene pairs. FDR over test statistics was calculated using q-value [148]. While this approach will

validate specific edges that have low p-values, lack of a low p-value does not imply that the edge

is false: if the causal cis-gene does not have an eQTL within 20 kb, for example, or the causal

relationship between a pair of genes is induced by GC exposure, then we will not see a low p-value

for that edge.

With this design, we found a strong enrichment of association p-values for the distal associations

in our network, globally validating our approach(Figure 8A). When we compared tissue-specific p-

value enrichments across the five tested tissues (Figure 8B), we found substantial enrichment across

other tissues as well, likely because many of these gene pair interactions are shared across tissues.

At an FDR threshold of 0.2, we were able to validate 280 network edges across the five tissues

with this approach. Of these 280 validated edges, 81 edges were validated with eQTLs from lung

tissue samples. With the exception of transformed fibroblasts, the number of edges with significant
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eQTL associations in other tissues was substantially lower than for lung samples. Across all five

tissues, there were 81, 13, 130, 32, 25 edges validated in samples from lung, subcutaneous adipose,

transformed fibroblasts, tibial artery, and thyroid tissues, respectively. Considering a contingency

table where edges validated in lung are one group and edges validated in all other tissues are another

group, where the total number of edges tested is 23,317, a Fisher’s exact test shows an enrichment

of edges validated in lung samples (p≤ 4.23×10−4; Supplementary Materials). This enrichment

reflects the match of GTEx lung samples and A549 cells, which are a model of human lung tissue.

The top two distal associations were found among the gene pairs (FAM19A5, IGFBP4), and

(NR4A1, IFITM3), both of which were specific to lung. Another top TF-specific interactions that

replicated in the GTEx study among was found among the genes transcription factor SNAI2, and the

immune gene VEGFA (Figure 8B, p≤ 6.7×10−6, q-value FDR≤ 0.16). A steroid-thyroid hormone

with antagonistic interaction with GC targets, NR4A1 plays an important role in the transforming

growth factor-beta (TFG-beta1) pathway [149]. Its causal gene, IFITM3, is an active component in

the interferon-gamma signaling (IFN-alpha). As previously noted, NR4A1 is likely a down-stream

effect of IFN signaling [150, 151], however, further investigation is required to validate a possible

direct interaction between the two genes. Finally, the most significant hit, the interaction between

the genes FAM19A5 and IGFBP4 is not well characterized, but commends attention due to the

pharmacological importance of the insulin-like growth factor-binding protein IGFBP4[152, 153].

This validation approach also allows the discovery of distal-eQTLs. Using these associations,

we found 203 distal-eQTL pairs in lung, and 756 over all five tissues (q-value FDR ≤ 0.2). The

number of identified distal-eQTLs using these directed networks improve on the number identified

in the GTEx distal-eQTL study [154], which found 2 distal-eQTLs in lung at FDR ≤ 0.2. This

suggests that these directed networks capture meaningful regulatory pathways even across study

participants and unmatched tissue types.

53



0

20000

30000

0.25 0.50 0.75 1.00

Fr
eq

ue
nc

y

1000

A B

C

Genotype
0 1 2

−2

−1

0

1

2

rs7105970

N
R

4A
1

−2

−1

0

1

2

IFITM3

N
R

4A
1

permuted tests
proposed gene pairs

0 1 2

rs1441004

VE
G

FA

−2 −1 0 1 2

SNAI2

VE
G

FA

0 1 2

rs61253062

R
XR

A

−2 −1 0 1 2

TFCP2L1

R
XR

A

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

0 1 2 −2 −1 0 1 2

GTEx trans-association p-values

Tissue
Lung
Artery Tibial

Adipose Subcutaneous

Thyroid

- log(p-value) for permuted tests 

- l
og

(p
-v

al
ue

) f
or

 
pr

op
os

ed
 g

en
e 

pa
irs

 

0 2 4 6

0

2

4

6

8

Transformed Fibroblasts
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