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Improved Inference of Causal Networks

from Gene Expression Time Series
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Background High-Dimensional Fit

e Glucocorticoids (GCs) are immunosuppressant Fit all causes simultaneously and regularize e 27,781 edge network
drugs that can lead to metabolic disorders such * 617 causal genes, 2744 effect genes
as diabetes and obesity k k 2o  Power-law out-degree distribution
* How can we disentangle the deS|r.ed immune Yt — Z (xth_l- -+ Z Z ﬁi Xt—i + & * Normal in-degree distribution
effects from the adverse metabolic effects? : :
. e i=1 geGi=lI
* GC binds to the glucocorticoid receptor (GR), A D cugendtition
which initiates transcription of a variety of A , L e © gl o L
genes, leading to a cascade of effects p =argmin|[Y —XB|5+Af(B) e |
 Can we infer the triggered causal network to B | S
pinpoint the immune and metabolic response? Jrasso(B) = |'B|§ S ——
* Use Gene expression time series from GC- frice(B) = Bl X :
stimulated lung cells ferastic(B) = a|Bli + (1 - a)|B]2 e g
« 2768 differentially expressed genes, 12 LT | - S
y exp & Hy : B¢ = 0 for given g € G. B | c 2 F

timepoints, 4 replicates
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Use coefficients fit over permuted data for null
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Methodological challenges: = seGi=l i=1 geGi=1
* High dimensionality: samples << predictors
* Statistical significance: F-test undefined B |23?| =0
* Validation: Ensure biological relevance .
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e Enrichment for Immune-Causal and
Metabolic-Causal Edges

Build comprehensive pipeline for causal network R, Network Edge Statistics
inference that handles high dimensionality, cousal value Edge Type Total| % | Odds Ratio
maintains statistical significance, and validates on TE-Causal 1931 ] 7 0.8
external biological data. TE-Effect 2393 | 8.6 1.1
Immune-Causal | 2119 | 7.6 2
. 2 types of permutation FDR. Immune-Effect | 1047 | 3.8 1
PrIOr ApprOaChES * Global FDR: global threshold over all coefficients Metabolic-Causal | 2271 | 8.2 2
—FPRContol Metabolic-Effect | 1211 | 4.4 1
Previous methods either do 1) low-dimensional | ot
fit or 2) high-dimensional fit missing an effective : E : E : ; « Strong repressive relation between
statistical null or biological validation | ' | Transcription Factor POUSF1 and
Mukhopha | Lozano our o Immune-related gene CXCL2
dyay 20074, | 20093, Work * Local FDR: threshold specific to effect gene 2 -
Tam 20127, | Shojaie — Finds networks with more consistent sizes over e
20104 Yao different settings (penalties, lag) 1f
2015>, ... N
High- E, ol
dimensional >4 J J %
causal fit a
Statistical 5
significance % ™~ J -2|
External ~ L | | | | |
validation &S J e X = YmeansX, Y notindependent o0 ’ Y imehr) P 8

 Use Association test between Y’s expression
and SNP affecting X's expression in lung

VECtor AUtO regrESSion Genotype Tissue Expression Data

cis eQTL

Based on Granger Causality® principle:

X =2 Y if including past values of X helps to
predict Y

* Fast, effective, flexible lags

 We have developed an improved pipeline for causal
network inference that validates on external data.
 Extension 1: Use the network to suggest genes for

trans eQTL

perturbation in follow-up experiments
e Extension 2: Extend model to incorporate causal
relations learned from data under multiple conditions
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