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Build	comprehensive	pipeline	for	causal	network	
inference	that	handles	high	dimensionality,	
maintains	staIsIcal	significance,	and	validates	on	
external	biological	data.	
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Based	on	Granger	Causality6	principle:	
	X	à	Y	if	including	past	values	of	X	helps	to	
predict	Y	
•  Fast,	effecIve,	flexible	lags		

Fit	all	causes	simultaneously	and	regularize	

False	Discovery	Control	

•  Local	FDR:	threshold	specific	to	effect	gene	
–  Finds	networks	with	more	consistent	sizes	over	
different	seSngs	(penalIes,	lag)	
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•  GlucocorIcoids	(GCs)	are	immunosuppressant	
drugs	that	can	lead	to	metabolic	disorders	such	
as	diabetes	and	obesity	

•  How	can	we	disentangle	the	desired	immune	
effects	from	the	adverse	metabolic	effects?	

•  GC	binds	to	the	glucocorIcoid	receptor	(GR),	
which	iniIates	transcripIon	of	a	variety	of	
genes,	leading	to	a	cascade	of	effects	

•  Can	we	infer	the	triggered	causal	network	to	
pinpoint	the	immune	and	metabolic	response?	

•  Use	Gene	expression	Ime	series	from	GC-
sImulated	lung	cells	

•  2768	differenIally	expressed	genes,	12	
Imepoints,	4	replicates	

•  280	validated	edges	(FDR	0.2)	
•  81	edges	in	lung	

Methodological	challenges:	
•  High	dimensionality:	samples	<<	predictors	
•  StaIsIcal	significance:	F-test	undefined5	
•  ValidaIon:	Ensure	biological	relevance	

Use	coefficients	fit	over	permuted	data	for	null	

2	types	of	permutaIon	FDR.	
•  Global	FDR:	global	threshold	over	all	coefficients	

•  X	à	Y	means	X,	Y	not	independent	
•  Use	AssociaIon	test	between	Y’s	expression	

and	SNP	affecIng	X’s	expression	in	lung	
Genotype	Tissue	Expression	Data	

•  27,781	edge	network	
•  617	causal	genes,	2744	effect	genes	
•  Power-law	out-degree	distribuIon	
•  Normal	in-degree	distribuIon	

•  Strong	repressive	relaIon	between	
TranscripIon	Factor	POU5F1	and	
Immune-related	gene	CXCL2	

Network Edge Statistics 
Edge	Type Total	 %	 Odds	Ra=o	
TF-Causal	 1931	 7	 0.8	
TF-Effect	 2393	 8.6	 1.1	

Immune-Causal	 2119	 7.6	 2	
Immune-Effect	 1047	 3.8	 1	

Metabolic-Causal	 2271	 8.2	 2	
Metabolic-Effect	 1211	 4.4	 1	

•  We	have	developed	an	improved	pipeline	for	causal	
network	inference	that	validates	on	external	data.	

•  Extension	1:	Use	the	network	to	suggest	genes	for	
perturbaIon	in	follow-up	experiments	

•  Extension	2:	Extend	model	to	incorporate	causal	
relaIons	learned	from	data	under	mulIple	condiIons	
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•  Enrichment	for	Immune-Causal	and	
Metabolic-Causal	Edges	

Previous	methods	either	do	1)	low-dimensional	
fit	or	2)	high-dimensional	fit	missing	an	effecIve	
staIsIcal	null	or	biological	validaIon	


