

MedScholars Research Fellowship

Reliability and Fairness Audits of Clinical AI Models using STARR-OMOP

Jonathan Lu, Amelia Sattler, Samantha Wang, Ali Raza Khaki, Alison Callahan, Scott Fleming, Rebecca Fong, Benjamin Ehlert, Ron C. Li, Lisa Shieh, Kavitha Ramchandran, Michael F. Gensheimer, Sarah Chobot, Stephen Pfohl, Siyun Li, Kenny Shum, Nitin Parikh, Priya Desai, Briththa Seevaratnam, Melanie Hanson, Margaret Smith, Yizhe Xu, Arjun Gokhale, Winifred Teuteberg, Nigam H. Shah

Contact: jhlu@stanford.edu

"We propose **model cards** as a step towards the responsible democratization of machine learning and related artificial intelligence technology, **increasing transparency into how well artificial intelligence technology works**."

They have been leading voices for fairness in AI, and were unjustly fired by Google in 2019 for raising concerns about

toward Black people and women.

harms of AI, including environmental/financial harms and harms

- Margaret Mitchell, ..., Timnit Gebru, et al. 2019 Model Cards for Model Reporting

"Audits are evaluations with an expectation for accountability."

- Inioluwa Deborah Raji, 2022

It's Time to Develop the Tools We Need to Hold Algorithms Accountable

• Deployed AI models in healthcare systems have been found to be unreliable and unfair

FAST@MPANY

05-28-21

How a largely untested AI algorithm crept into hundreds of hospitals

During the pandemic, the electronic health record giant Epic quickly rolled out an algorithm to help doctors decide which patients needed the most immediate care. Doctors believe it will change how they practice.

Khetpal 2021

Dissecting racial bias in an algorithm used to manage the health of populations

Ziad Obermeyer^{1,2,*}, Brian Powers³, Christine Vogeli⁴,
Sendhil Mullainathan^{5,*,†}

Obermeyer 2019

Sendak 2020

• 15 Model Reporting Guidelines published since 2012 (!)

Model Facts			odel name: Deep S	epsis	Locale: Duke University Hospital		
Approval Date: 09/22/2019 La			ast Update: 01/13/2020		Version: 1.0		
Summary This model uses EHR in will meet sepsis criteria model was licensed to b	put data collec within the nex Cohere Med in	ted from kt 4 hou July 20:	n a patient's current ir rs. It was developed ir 19.	npatient encounter 2016-2019 by the	r to estimate th e Duke Institute	e probability that the patient for Health Innovation. The	
Mechanism • Output • Target population • Time of prediction • Input data source • Input data type • Training data locati • Model type	ion and time-p	eriod	sepsis within the ne: 	ct 4 hours, see out - 100% probability all adult emographics, anal DUH	come definition y of sepsis occu patients >18 y. every hour electr ytes, vitals, me I, diagnostic col References	n in "Other Information" rring in the next 4 hours o. presenting to DUH ED of a patient's encounter onic health record (EHR) dication administrations hort, 10/2014 – 12/2015 ecurrent Neural Network	
Validation and per	formance Prevalence	AUC	PPV @ Sensitivity	Sensitivity @	Cohort	Cohort URL / DOI	
Local Retrospective	18.9%	0.88	0.14	0.50	Diagnostic	arxiv.org/abs/1708.05894	
Local Temporal	6.4%	0.94	0.20	0.66	Diagnostic	jmir.org/preprint/15182	
Local Prospective	TBD	TBD	TBD	TBD	TBD	TBD	
External	TBD	TBD	TBD	TBD	TBD	TBD	
Target Depulation	C 40/	0.04	0.20	0.00	Discontin	1.1	

- 15 Model Reporting Guidelines published since 2012 (!)
 - Only 1 completed for a model in use for a health system
- We assessed if commonly used Epic models adhere to the guidelines

Model Facts M			Iodel name: Deep Sepsis		Locale: Duke University Hospita	
Approval Date: 09/22/2019 La			ast Update: 01/13/2020		Version: 1.0	
Summary This model uses EHR in will meet sepsis criteria model was licensed to	put data collec a within the nex Cohere Med in	ted fron kt 4 hou July 20:	n a patient's current ir rs. It was developed ir 19.	npatient encounte 1 2016-2019 by the	r to estimate th e Duke Institute	ne probability that the patient of Health Innovation. The
Mechanism • Outcome • Output • Target population • Time of prediction • Input data source • Input data type • Training data locati • Model type	ion and time-p	eriod	sepsis within the ne: 	kt 4 hours, see out - 100% probabilit all adult emographics, anal DUH	come definition y of sepsis occu patients >18 y. every hour electr lytes, vitals, me 1, diagnostic co Ref	n in "Other Information" rrring in the next 4 hours o. presenting to DUH ED of a patient's encounter onic health record (EHR) dication administrations hort, 10/2014 – 12/2015 ecurrent Neural Network
Validation and per	formance	AUC	DDV @ Consitivity	Consitiuity @	Cohort	Cabort URL (DOL
	Frevalence	AUC	of 60%	PPV of 20%	Туре	conore one / DOI
Local Retrospective	18.9%	0.88	0.14	0.50	Diagnostic	arxiv.org/abs/1708.05894
Local Temporal	6.4%	0.94	0.20	0.66	Diagnostic	jmir.org/preprint/15182
Local Prospective	TBD	TRD	TBD	TBD	TBD	TBD

TBD

0.66

External

Target Population

TBD

6.4%

TBD | TBD

0.94 0.20

TBD

jmir.org/preprint/15182

TBD

Diagnostic

- Low reporting of items related to:
 - Reliability
 - External Validation (33%)
 - Confidence Intervals (0%)
 - Calibration Plots (0%)
 - Fairness
 - Summary Statistics: Sex (33%), Ethnicity/Race (33%)
 - Subgroup Analyses (33%)
- How hard is it to report these for a model in use?

(and		
	_	
	1	

<u>Models</u>

How hard is it to do a reliability and fairness audit for Advance Care Planning models?

Epic End-of-life Index	Stanford Hospital Medicine ACP Model
Input: 46 features (age, sex, insurance status, comorbidities, medications)	Input: 13189 features (age, sex, lab orders, procedure orders)
12-month mortality	12-month mortality
Logistic regression	Gradient Boosted Tree
All patients within health system	Hospitalized patients

Study Design

1. Solicit Clinician Labels

3. Perform Reliability and Fairness Audit

4. Survey Decisionmakers, Assess Time and Requirements

2. Link to Model Predictions, Demographics,

Fairness Audit: Epic EOL High Threshold in Inpatient Oncology

A. SUMMARY STATISTICS

No significant differences in prevalence of positive label for Hispanic patients.

	# Patients	Positive label prevalence (fraction)	95% CI for prevalence
Overall	150	0.7 (105/150)	0.62-0.77
Hispanic	30	0.73 (22/30)	0.54-0.88
Hispanic Male	17	0.76 (13/17)	0.5-0.93
Hispanic Female	13	0.69 (9/13)	0.39-0.91

Fairness Audit: Epic EOL High Threshold in Inpatient Oncology

B. SUBGROUP PERFORMANCE

Sensitivity is significantly lower for Hispanic male patients.

Fairness Audit: Epic EOL High Threshold in Inpatient Oncology

C. SUBGROUP CALIBRATION

Significant underprediction of events for Hispanic patients.

Caveat: all results are probably wrong

Validating self-identified race/ethnicity at an academic family medicine clinic

Randy Nhan, BS; Samantha Lane, Lupe Barragan, Jeremy Valencia, A Sattler, MD; K Taylor, MD

Stanford Family Medicine, Stanford University School of Medicine

Introduction

Healthy disparities based on race/ethnicity are rampant throughout the United States that affect specific groups in attaining proper care.

In order to address these disparities, a critical step is having accurate race/ethnicity data to understand and act on those disparities. Prior studies suggest missing data is a significant problem to accurately report and understand health disparities.

We sought to understand the accuracy of race/ethnicity data collection in an academic family medicine clinic as a step toward addressing race/ethnicity disparities.

Methods

To test for the validity of the data, our team worked with a PCC (primary care coordinator) and front desk staff to survey individual patients over a total of 3 weeks who had either a video or in-person visit. They were all asked to self-identify their race/ethnicity. We tallied the number and type of mismatch between self-report versus EMR recorded data.

Percent mismatched of Race/Ethnicity

Conclusion & Discussion

Patients were misclassified almost 37% of the time in the EMR. The most common misclassification was "other" and Hispanics were most likely to be misclassified.

Ongoing assessment of the process of race/ethnicity data collection is underway to improve data collection.

Several future interventions includes looking into accessibility to self-update demographics via the myHealth application, addressing lack of training regarding health disparities among staff and expanding the limited choices for race/ethnicity in patient charts.

References

 Klinger, E. V., Carlini, S. V., Gonzalez, I., Hubert, S. S., Linder, J. A., Rigoti, N. A., Kontos, E. Z., Park, E. R., Marinacci, L. X., & Haas, J. S. (2015). Accuracy of rice, edmicity, and language preference in an electronic health record. *Journal of general internal medicine*, 30(6), 719–723. https://doi.org/10.1007/s11606-014-3102-8

 Hamilton, N. S., Edelman, D., Weinberger, M., & Jackson, G. L. (2009). Concordance between self-reported race/ethnicity and that recorded in a Veteran Affairs electronic medical record. North Carolina medical journal, 70(4), 296–300.

3. Wilson, G., Haxanin-Wynia, R., Hauser, D., & Calman, N. (2013). Implementing Institute of Medicine recommendations on collection of patient race, ethnicity, and language data in a community health center. Journal of health care for the poor and underserved, 24(2), 875–884. https://doi.org/10.1533/pna.2013.0071

- Does EMR = self-identified race/ethnicity at Stanford Famly Medicine? (<u>Nhan 2021</u>)
 - **100%** Misclassification Rate for Hispanic/Latinx patients (23)
 - **37%** Misclassification rate overall (147)
- Similarly findings in Optum, Healthcare Cost Utilization Project (<u>Polubriaginof 2021</u>)

What is required to perform a reliability/fairness audit of a model?

- Clinician Labels
- Model Predictions
- Linking Clinicians with Relevant Patients
- [Fairness] Patient Demographics

What is required to perform a reliability/fairness audit of a model?

- Clinician Labels Relationships with Clinicians
- Model Predictions Model Access
- Linking Clinicians with Relevant Patients Visits, Patient Panels
- [Fairness] Patient Demographics Person Table (STARR-OMOP)

Thank you to Nitin Parikh, Priya Desai, and Research IT!

